chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

應用材料公司以技術助力極紫外光和三維環(huán)繞柵極晶體管實現(xiàn)二維微縮

21克888 ? 來源:廠商供稿 ? 作者:應用材料公司 ? 2022-04-22 18:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

?應用材料公司利用 Stensar?CVD取代旋涂鍍膜以擴展二維極紫外光邏輯微縮

?預覽最廣泛的三維環(huán)繞柵極晶體管技術產品組合,包括兩種全新的IMS?系統(tǒng)

2022 年 4 月 21 日,加利福尼亞州圣克拉拉市——應用材料公司推出了旨在幫助客戶利用極紫外光(EUV)繼續(xù)推進二維微縮的多項創(chuàng)新技術,并詳細介紹了業(yè)內最廣泛的下一代三維環(huán)繞柵極晶體管制造技術的產品組合。

環(huán)繞柵極(GAA)晶體管將成為自2010年FinFETs問世以來芯片行業(yè)最大的設計轉變之一
材料工程的創(chuàng)新為GAA晶體管提供了功率和性能的提升


要在未來若干年內提升晶體管密度,芯片制造商正在尋求互補的兩條道路。其一是延續(xù)傳統(tǒng)的摩爾定律二維微縮,也就是使用 EUV光刻和材料工程打造出更小的特征。另一條則是使用設計技術協(xié)同優(yōu)化(DTCO)和三維技巧,對邏輯單元布局進行巧妙優(yōu)化,這樣無需對光刻柵距進行任何更改即可增加密度。后一種方法包括后段連線和環(huán)繞柵極(GAA)晶體管,即使面臨傳統(tǒng)二維微縮的減緩,仍將有力推動邏輯密度在未來幾年內的持續(xù)增長。通過將這些技術有機結合,可以幫助芯片制造商完成邏輯芯片在未來的迭代進化,同時實現(xiàn)功率、性能、面積、成本和上市時間(即 PPACt)的同步改善。

應用材料公司高級副總裁、半導體產品事業(yè)部總經理珀拉布?拉賈博士表示:“應用材料公司的核心戰(zhàn)略是成為賦能客戶的PPACt賦能企業(yè)?,依托我們現(xiàn)有的七大創(chuàng)新,支持客戶利用EUV繼續(xù)推進二維微縮。同時,我們還詳細介紹了GAA晶體管的顛覆性制造方法,該方法與現(xiàn)今FinFET晶體管截然不同。不僅如此,應用材料公司已經準備好了覆蓋范圍最廣泛的GAA制造產品線,包含涉及外延生長、原子層沉積和選擇性材料刻蝕的全新生產步驟,以及兩項全新的用于制造理想GAA氧化柵極和金屬柵極的集成材料解決方案(Integrated Materials Solutions?)。”

二維微縮的擴展


極紫外光(EUV)光刻的出現(xiàn)使芯片制造商得以產出更小的特征,并增加晶體管密度。但行業(yè)目前的現(xiàn)狀是:要繼續(xù)利用EUV進行微縮困難重重,迫切需要全新的沉積、刻蝕和量測方法。

完成EUV光刻膠顯影后,需要先通過稱為過渡層和硬掩模的一系列中間層對芯片圖形進行刻蝕,隨后才能將其最終刻蝕到晶圓上。迄今為止,這些中間層都是使用旋涂技術來進行沉積的。今日,應用材料公司推出使用該公司的Precision化學氣相沉積系統(tǒng)來進行沉積,適用于EUV的 Stensar?先進圖形鍍膜(Stensar? Advanced Patterning Film for EUV)。相較于旋涂沉積,應用材料公司的CVD膜可幫助客戶對EUV硬掩模層進行微調,使其達到特定厚度和刻蝕彈性,以便在整個晶圓上EUV圖形傳輸時達成接近完美的均勻性。

應用材料公司還詳解了其Sym3?Y刻蝕系統(tǒng)的特殊功能,即允許客戶在相同反應腔內進行材料刻蝕和沉積,這樣可先改善EUV圖形,再將其刻蝕到晶圓上。Sym3反應腔會輕輕移除EUV光刻膠材質,然后以特殊方式重新進行材料沉積,使圖形變均勻,從而消除因“隨機誤差”而產生的圖形易變性。改善后的EUV圖形可提高良率、降低芯片功耗并提升其性能。因此,位居DRAM市場中導體刻蝕系統(tǒng)首要供應商位置的應用材料公司,正在憑借其Sym3技術的飛速發(fā)展,將客戶群體從存儲器領域拓展到晶圓代工廠/邏輯芯片領域。

應用材料公司還展示了如何將其PROVision?eBeam量測技術用于深入觀察多層芯片內部,以便精確測量整個晶圓上的EUV圖形化特征,幫助客戶解決其他量測技巧可能無法診斷的“邊緣布局錯誤”。應用材料公司2021年電子束系統(tǒng)的營收幾乎翻倍,使其躍居電子束技術供應商榜首的位置。

三維環(huán)繞式柵極晶體管工藝設計

新興的GAA晶體管為客戶示范了如何利用三維設計技巧和DTCO布局創(chuàng)新來對二維微縮加以補充,即使二維微縮速度放緩,仍可快速提升邏輯密度。材料工程領域的創(chuàng)新同時還有助于GAA晶體管降低功耗和提升性能。

在FinFET中,構成晶體管電子路徑的垂直溝道是由光刻和刻蝕來形成的,這種工藝會導致溝道寬度不均勻。而這種不均勻性則會對功耗和性能產生不利影響,這也是客戶轉投GAA的另一個主要原因。

GAA晶體管看上去就像是FinFET晶體管旋轉了90度,使溝道從垂直變?yōu)樗健AA溝道是通過使用外延生長和選擇性材料刻蝕來形成的,這種技術使客戶得以精確設計寬度,實現(xiàn)寬度均勻,從而獲得最優(yōu)功耗和性能。外延生長系統(tǒng)恰恰是應用材料公司的首項產品,自此之后,它便一躍成為市場領頭羊。2016年,應用材料公司發(fā)布Selectra?系統(tǒng)并在其中率先啟用選擇性材料刻蝕技術,迄今已提供1000余個反應腔給客戶使用,并位居市場領袖地位。

GAA晶體管的主要制造挑戰(zhàn)在于溝道間距僅約10納米,在如此微小的空間內,客戶必須在圍繞各溝道的全部四周進行多層氧化柵極和金屬柵極堆疊的沉積。

應用材料公司專為氧化柵極堆疊開發(fā)了IMS?(集成材料解決方案)系統(tǒng),通過將氧化柵極變薄,增加了驅動電流并提升晶體管性能。但氧化柵極越薄,通常就會導致漏電流越高,造成功耗浪費和發(fā)熱。應用材料公司全新的IMS?系統(tǒng)將等效氧化層厚度降低1.5埃,使設計師無需增加柵極漏電流即可提升性能,或者在保持性能不變的前提下,使柵極漏電流減小至原先的十分之一以下。它將原子層沉積(ALD)、熱處理步驟、等離子處理步驟和量測整合到單一高真空系統(tǒng)內。

應用材料公司還展示了IMS系統(tǒng),該系統(tǒng)用于GAA金屬柵極的工藝,支持客戶借由調整柵極厚度來微調晶體管閾值電壓,以滿足從電池供電式移動設備到高性能服務器在內的各種特定計算應用的每瓦特功耗性能目標。它可在高度真空環(huán)境內執(zhí)行高精度金屬原子層沉積步驟以防止空氣污染。

應用材料公司已經在4月21日舉辦的“全新微縮之旅”大師課上,提供了有關其邏輯微縮解決方案的更多詳情。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    淺談三維原子探針的跨領域應用

    二維圖像、次離子質譜(SIMS)等技術能互補,能發(fā)現(xiàn)工程材料里的析出物、晶界、位錯這些微觀結構——這些結構大多有局部成分變化,尺寸也在 APT 能分析的范圍內?,F(xiàn)在它的應用已經覆蓋了
    的頭像 發(fā)表于 01-20 15:33 ?97次閱讀
    淺談<b class='flag-5'>三維</b>原子探針的跨領域應用

    二維影像掃描引擎在門禁二維碼刷卡梯控行業(yè)中的應用

    在當今科技日新月異的時代,二維影像掃描引擎以其卓越的識別性能和廣泛的應用領域,成為了門禁系統(tǒng)中不可或缺的重要組成部分,尤其在二維碼刷卡梯控行業(yè)中展現(xiàn)出了非凡的價值。本文將深入探討二維影像掃描引擎在
    的頭像 發(fā)表于 12-17 15:42 ?261次閱讀
    <b class='flag-5'>二維</b>影像掃描引擎在門禁<b class='flag-5'>二維</b>碼刷卡梯控行業(yè)中的應用

    二維數組介紹

    大家不要認為二維數組在內存中就是按行、列這樣二維存儲的,實際上,不管二維、三維數組… 都是編譯器的語法糖。 存儲上和一數組沒有本質區(qū)別,
    發(fā)表于 11-25 07:42

    電壓選擇晶體管應用電路第

    電壓選擇晶體管應用電路第期 以前發(fā)表過關于電壓選擇晶體管的結構和原理的文章,這一期我將介紹一下電壓選擇晶體管的用法。如圖所示: 當輸入電壓Vin等于電壓選擇
    發(fā)表于 11-17 07:42

    一文讀懂 | 三維視覺領域國家級制造業(yè)單項冠軍——先臨三維的品牌布局

    先臨三維科技股份有限公司成立于2004年,是三維視覺領域國家級制造業(yè)單項冠軍、國家專精特新“小巨人”企業(yè)。公司專注于高精度三維視覺軟、硬件的研發(fā)和應用,致力于成為具有全球影響力的
    的頭像 發(fā)表于 11-11 14:55 ?559次閱讀
    一文讀懂 | <b class='flag-5'>三維</b>視覺領域國家級制造業(yè)單項冠軍——先臨<b class='flag-5'>三維</b>的品牌布局

    三維掃描儀革命性升級:先臨三維FreeScan Omni實現(xiàn)單機無線掃描+檢測

    。 隨著高精度三維掃描技術的飛速發(fā)展,無線掃描這一應用形式不斷深化,經過這些年的發(fā)展,先臨三維已經歷經第一代、第代直至第
    的頭像 發(fā)表于 09-26 11:26 ?444次閱讀
    <b class='flag-5'>三維</b>掃描儀革命性升級:先臨<b class='flag-5'>三維</b>FreeScan Omni<b class='flag-5'>實現(xiàn)</b>單機無線掃描+檢測

    中航光電推出二維FA光纖陣列組件

    中航光電研制的二維FA光纖陣列組件作為OCS光交換設備的關鍵組件,用于實現(xiàn)陣列光信號的輸入和輸出功能;該組件集成了二維光纖陣列和二維透鏡陣列,通過
    的頭像 發(fā)表于 09-10 18:19 ?2137次閱讀

    基于TSV的三維集成電路制造技術

    三維集成電路工藝技術因特征尺寸縮小與系統(tǒng)復雜度提升而發(fā)展,其核心目標在于通過垂直堆疊芯片突破二維物理極限,同時滿足高密度、高性能、高可靠性及低成本的綜合需求。
    的頭像 發(fā)表于 07-08 09:53 ?1824次閱讀
    基于TSV的<b class='flag-5'>三維</b>集成電路制造<b class='flag-5'>技術</b>

    下一代高速芯片晶體管解制造問題解決了!

    先進的晶體管架構,是納米片晶體管(Nanosheet FET)的延伸和發(fā)展,主要用于實現(xiàn)更小的晶體管尺寸和更高的集成密度,滿足未來半導體工
    發(fā)表于 06-20 10:40

    世界首臺非硅二維材料計算機問世 二維材料是什么?二維材料的核心特征解讀

    據外媒報道;美國賓夕法尼亞州立大學團隊在《自然》雜志發(fā)表研究成果,首次利用原子級厚度的二維材料(非硅)成功研制出功能完整的計算機,標志著新型電子設備開發(fā)的重要進展。這是一項突破性成果;首次利用二維
    的頭像 發(fā)表于 06-12 15:25 ?1508次閱讀

    基于STM32的二維碼識別源碼+二維碼解碼庫lib

    基于STM32的二維碼識別源碼+二維碼解碼庫lib,推薦下載!
    發(fā)表于 05-28 22:04

    基于STM32的二維碼識別源碼+二維碼解碼庫lib

    基于STM32的二維碼識別源碼+二維碼解碼庫lib項目實例下載! 純分享帖,需要者可點擊附件免費獲取完整資料~~~【免責聲明】本文系網絡轉載,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請第一時間告知,刪除內容!
    發(fā)表于 05-23 20:45

    傾斜儀是否支持二維三維測量?可以繪制結構物變形曲線嗎?

    如何用多支設備聯(lián)動,讓隱蔽的結構變形“無處可藏”——為工程安全加上一道“數字保險”!一、傾斜儀能測二維三維傾斜嗎?答案是可以!根據工程需求,傾斜儀支持單軸、雙軸、
    的頭像 發(fā)表于 04-14 15:28 ?458次閱讀
    傾斜儀是否支持<b class='flag-5'>二維</b>或<b class='flag-5'>三維</b>測量?可以繪制結構物變形曲線嗎?

    泰克科技測試設備在二維金屬材料研究中的應用

    經典二維材料以其原子級厚度、獨特的電學/機械性能和多樣的結構,成為納米技術領域的基礎材料,和二維金屬材料
    的頭像 發(fā)表于 03-27 15:06 ?926次閱讀
    泰克科技測試設備在<b class='flag-5'>二維</b>金屬<b class='flag-5'>材料</b>研究中的應用

    晶體管柵極結構形成

    柵極(Gate)是晶體管的核心控制結構,位于源(Source)和漏(Drain)之間。其功能類似于“開關”,通過施加電壓控制源漏之間的
    的頭像 發(fā)表于 03-12 17:33 ?2904次閱讀
    <b class='flag-5'>晶體管</b><b class='flag-5'>柵極</b>結構形成