chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)科普

NVIDIA英偉達(dá) ? 來源:NVIDIA英偉達(dá) ? 作者:NVIDIA英偉達(dá) ? 2022-05-13 10:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)是一種深度學(xué)習(xí)網(wǎng)絡(luò),主要用于識(shí)別圖像和對(duì)其進(jìn)行分類,以及識(shí)別圖像中的對(duì)象。

什么是卷積神經(jīng)網(wǎng)絡(luò)?

人工神經(jīng)網(wǎng)絡(luò)是一個(gè)硬件和/或軟件系統(tǒng),模仿神經(jīng)元在人類大腦中的運(yùn)轉(zhuǎn)方式。卷積神經(jīng)網(wǎng)絡(luò) (CNN) 通常會(huì)在多個(gè)全連接或池化的卷積層中應(yīng)用多層感知器(對(duì)視覺輸入內(nèi)容進(jìn)行分類的算法)的變體。

CNN 的學(xué)習(xí)方式與人類相同。人類出生時(shí)并不知道貓或鳥長(zhǎng)什么樣。隨著我們長(zhǎng)大成熟,我們學(xué)到了某些形狀和顏色對(duì)應(yīng)某些元素,而這些元素共同構(gòu)成了一種元素。學(xué)習(xí)了爪子和喙的樣子后,我們就能更好地區(qū)分貓和鳥。

神經(jīng)網(wǎng)絡(luò)的工作原理基本也是這樣。通過處理標(biāo)記圖像的訓(xùn)練集,機(jī)器能夠?qū)W習(xí)識(shí)別元素,即圖像中對(duì)象的特征。

CNN 是頗受歡迎的深度學(xué)習(xí)算法類型之一。卷積是將濾波器應(yīng)用于輸入內(nèi)容的簡(jiǎn)單過程,會(huì)帶來以數(shù)值形式表示的激活。通過對(duì)圖像反復(fù)應(yīng)用同一濾波器,會(huì)生成名為特征圖的激活圖。這表示檢測(cè)到的特征的位置和強(qiáng)度。

卷積是一種線性運(yùn)算,需要將一組權(quán)重與輸入相乘,以生成稱為濾波器的二維權(quán)重?cái)?shù)組。如果調(diào)整濾波器以檢測(cè)輸入中的特定特征類型,則在整個(gè)輸入圖像中重復(fù)使用該濾波器可以發(fā)現(xiàn)圖像中任意位置的特征。

5788b818-d1df-11ec-bce3-dac502259ad0.png

例如,一個(gè)濾波器用于檢測(cè)特定形狀的曲線,另一個(gè)濾波器用于檢測(cè)垂直線,第三個(gè)濾波器用于檢測(cè)水平線。其他濾波器可以檢測(cè)顏色、邊緣和光線強(qiáng)度。連接多個(gè)濾波器的輸出,即可以表示與訓(xùn)練數(shù)據(jù)中的已知元素匹配的復(fù)雜形狀。

CNN 通常由三層組成:1) 輸入層、2) 輸出層和 3) 包含多個(gè)卷積層的隱藏層,其中隱藏層為池化層、全連接層和標(biāo)準(zhǔn)化層。

57c85568-d1df-11ec-bce3-dac502259ad0.png

第一層通常用于捕捉邊緣、顏色、梯度方向和基本幾何形狀等基本特征。添加層后,此模型會(huì)填充高級(jí)特征,這些特征會(huì)逐漸確定一個(gè)大型棕色圖塊,首先是車輛,然后是汽車,然后是別克。

池化層會(huì)逐漸縮小表示的空間的大小,提高計(jì)算效率。池化層會(huì)單獨(dú)對(duì)每個(gè)特征圖進(jìn)行運(yùn)算。池化層中常用的方法是最大池化,即捕捉數(shù)組的最大值,從而減少計(jì)算所需的值的數(shù)量。堆疊卷積層允許將輸入分解為其基本元素。

標(biāo)準(zhǔn)化層會(huì)對(duì)數(shù)據(jù)進(jìn)行正則化處理,以改善神經(jīng)網(wǎng)絡(luò)的性能和穩(wěn)定性。標(biāo)準(zhǔn)化層通過將所有輸入都轉(zhuǎn)換為均值為 0 且方差為 1,從而使每個(gè)層的輸入更便于管理。

全連接層用于將一層中的各個(gè)神經(jīng)元與另一層中的所有神經(jīng)元相連。

581082a2-d1df-11ec-bce3-dac502259ad0.png

為什么選擇卷積神經(jīng)網(wǎng)絡(luò)?

神經(jīng)網(wǎng)絡(luò)有三種基本類型:

多層感知器擅長(zhǎng)使用標(biāo)記輸入處理分類預(yù)測(cè)問題。它們是可應(yīng)用于各種場(chǎng)景(包括圖像識(shí)別)的靈活網(wǎng)絡(luò)。

時(shí)間遞歸神經(jīng)網(wǎng)絡(luò)使用一個(gè)或多個(gè)步長(zhǎng)作為輸入,并以多個(gè)步長(zhǎng)作為輸出,針對(duì)序列預(yù)測(cè)問題進(jìn)行了優(yōu)化。它們擅長(zhǎng)解讀時(shí)間序列數(shù)據(jù),但對(duì)圖像分析無效。

卷積神經(jīng)網(wǎng)絡(luò)專為將圖像數(shù)據(jù)映射到輸出變量而設(shè)計(jì)。它們特別擅長(zhǎng)發(fā)掘二維圖像的內(nèi)部表征,可用于學(xué)習(xí)位置和尺寸不變的結(jié)構(gòu)。這使得它們特別擅長(zhǎng)處理具有空間關(guān)系組件的數(shù)據(jù)。

CNN 已成為許多先進(jìn)深度學(xué)習(xí)(例如面部識(shí)別、手寫識(shí)別和文本數(shù)字化)方面的計(jì)算機(jī)視覺應(yīng)用程序的首選模型。此外,它還可應(yīng)用于推薦系統(tǒng)。2012 年 CNN 迎來了轉(zhuǎn)折點(diǎn),當(dāng)時(shí)多倫多大學(xué)研究生 Alex Krizhevsky 使用 CNN 模型將分類錯(cuò)誤記錄從 26% 降低至 15%,在當(dāng)年的 ImageNet 競(jìng)賽中獲勝,這一成績(jī)?cè)诋?dāng)時(shí)令人震驚。

事實(shí)證明,在涉及圖像處理的應(yīng)用場(chǎng)合,CNN 模型能夠帶來出色結(jié)果和超高計(jì)算效率。雖然 CNN 模型并不是適合此領(lǐng)域的唯一深度學(xué)習(xí)模型,但這是大家共同的選擇,并且將成為未來持續(xù)創(chuàng)新的焦點(diǎn)。

關(guān)鍵用例

CNN 是目前機(jī)器用來識(shí)別物體的圖像處理器。CNN 已成為當(dāng)今自動(dòng)駕駛汽車、石油勘探和聚變能研究領(lǐng)域的眼睛。在醫(yī)學(xué)成像方面,它們可以幫助更快速發(fā)現(xiàn)疾病并挽救生命。

得益于 CNN 和遞歸神經(jīng)網(wǎng)絡(luò) (RNN),各種 AI 驅(qū)動(dòng)型機(jī)器都具備了像我們眼睛一樣的能力。經(jīng)過在深度神經(jīng)網(wǎng)絡(luò)領(lǐng)域數(shù)十年的發(fā)展以及在處理海量數(shù)據(jù)的 GPU 高性能計(jì)算方面的長(zhǎng)足進(jìn)步,大部分 AI 應(yīng)用都已成為可能。

卷積神經(jīng)網(wǎng)絡(luò)的重要意義

數(shù)據(jù)科學(xué)團(tuán)隊(duì)

圖像識(shí)別應(yīng)用范圍廣,是許多數(shù)據(jù)科學(xué)團(tuán)隊(duì)必備的核心能力。CNN 是一項(xiàng)成熟的標(biāo)準(zhǔn),可為數(shù)據(jù)科學(xué)團(tuán)隊(duì)提供技能基準(zhǔn),讓他們可以學(xué)習(xí)并掌握這些技能,以滿足當(dāng)前和未來的圖像處理需求。

數(shù)據(jù)工程團(tuán)隊(duì)

了解 CNN 處理所需訓(xùn)練數(shù)據(jù)的工程師可以提前一步滿足組織需求。數(shù)據(jù)集采用規(guī)定的格式,并且工程師可以通過大量公開的數(shù)據(jù)集進(jìn)行學(xué)習(xí)。這簡(jiǎn)化了將深度學(xué)習(xí)算法投入生產(chǎn)的過程。

借助 GPU 加速卷積神經(jīng)網(wǎng)絡(luò)

先進(jìn)的神經(jīng)網(wǎng)絡(luò)可能有數(shù)百萬乃至十億以上的參數(shù)需要通過反向傳播進(jìn)行調(diào)整。此外,它們需要大量的訓(xùn)練數(shù)據(jù)才能實(shí)現(xiàn)較高的準(zhǔn)確度,這意味著成千上萬乃至數(shù)百萬的輸入樣本必須同時(shí)進(jìn)行向前和向后傳輸。由于神經(jīng)網(wǎng)絡(luò)由大量相同的神經(jīng)元構(gòu)建而成,因此本質(zhì)上具有高度并行性。這種并行性會(huì)自然映射到 GPU,因此相比僅依賴 CPU 的訓(xùn)練,計(jì)算速度會(huì)大幅提高。

通過深度學(xué)習(xí)框架,研究人員能輕松創(chuàng)建和探索卷積神經(jīng)網(wǎng)絡(luò) (CNN) 和其他深度神經(jīng)網(wǎng)絡(luò) (DNN),同時(shí)達(dá)到實(shí)驗(yàn)和工業(yè)部署所需的較高速度。NVIDIA 深度學(xué)習(xí) SDK 可加快 Caffe、CNTK、TensorFlow、Theano 和 Torch 等廣泛使用的深度學(xué)習(xí)框架以及眾多其他機(jī)器學(xué)習(xí)應(yīng)用程序的運(yùn)行速度。

深度學(xué)習(xí)框架在 GPU 上的運(yùn)行速度更快,并可以在單個(gè)節(jié)點(diǎn)內(nèi)的多個(gè) GPU 間擴(kuò)展。為了將框架與 GPU 結(jié)合使用以進(jìn)行卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練和推理過程,NVIDIA 分別提供了 cuDNN 和 TensorRT。cuDNN 和 TensorRT 可大幅優(yōu)化卷積層、池化層、標(biāo)準(zhǔn)化層和激活層等標(biāo)準(zhǔn)例程的實(shí)施。

為快速開發(fā)和部署視覺模型,NVIDIA 面向視覺 AI 開發(fā)者提供了 DeepStream SDK,同時(shí)面向計(jì)算機(jī)視覺領(lǐng)域提供了 TAO 工具套件,用于創(chuàng)建準(zhǔn)確且高效的 AI 模型。

原文標(biāo)題:NVIDIA 大講堂 | 什么是卷積神經(jīng)網(wǎng)絡(luò)?

文章出處:【微信公眾號(hào):NVIDIA英偉達(dá)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:NVIDIA 大講堂 | 什么是卷積神經(jīng)網(wǎng)絡(luò)?

文章出處:【微信號(hào):NVIDIA_China,微信公眾號(hào):NVIDIA英偉達(dá)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    自動(dòng)駕駛中常提的卷積神經(jīng)網(wǎng)絡(luò)是個(gè)啥?

    在自動(dòng)駕駛領(lǐng)域,經(jīng)常會(huì)聽到卷積神經(jīng)網(wǎng)絡(luò)技術(shù)。卷積神經(jīng)網(wǎng)絡(luò),簡(jiǎn)稱為CNN,是一種專門用來處理網(wǎng)格狀數(shù)據(jù)(比如圖像)的深度學(xué)習(xí)模型。CNN在圖像處理中尤其常見,因?yàn)閳D像本身就可以看作是由像
    的頭像 發(fā)表于 11-19 18:15 ?1815次閱讀
    自動(dòng)駕駛中常提的<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>是個(gè)啥?

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)原理及在MCU200T上仿真測(cè)試

    數(shù)的提出很大程度的解決了BP算法在優(yōu)化深層神經(jīng)網(wǎng)絡(luò)時(shí)的梯度耗散問題。當(dāng)x&gt;0 時(shí),梯度恒為1,無梯度耗散問題,收斂快;當(dāng)x&lt;0 時(shí),該層的輸出為0。 CNN
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    :   神經(jīng)網(wǎng)絡(luò)卷積函數(shù)   神經(jīng)網(wǎng)絡(luò)激活函數(shù)   全連接層函數(shù)   神經(jīng)網(wǎng)絡(luò)池化函數(shù)   Softmax 函數(shù)   神經(jīng)網(wǎng)絡(luò)支持功能
    發(fā)表于 10-29 06:08

    卷積運(yùn)算分析

    的數(shù)據(jù),故設(shè)計(jì)了ConvUnit模塊實(shí)現(xiàn)單個(gè)感受域規(guī)模的卷積運(yùn)算. 卷積運(yùn)算:不同于數(shù)學(xué)當(dāng)中提及到的卷積概念,CNN神經(jīng)網(wǎng)絡(luò)中的卷積嚴(yán)格意義
    發(fā)表于 10-28 07:31

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    模型。 我們使用MNIST數(shù)據(jù)集,訓(xùn)練一個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,用于手寫數(shù)字識(shí)別。一旦模型被訓(xùn)練并保存,就可以用于對(duì)新圖像進(jìn)行推理和預(yù)測(cè)。要使用生成的模型進(jìn)行推理,可以按照以下步驟進(jìn)行操作: 1.
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    讀取。接下來需要使用擴(kuò)展指令,完成神經(jīng)網(wǎng)絡(luò)的部署,此處僅對(duì)第一層卷積+池化的部署進(jìn)行說明,其余層與之類似。 1.使用 Custom_Dtrans 指令,將權(quán)重?cái)?shù)據(jù)、輸入數(shù)據(jù)導(dǎo)入硬件加速器內(nèi)。對(duì)于權(quán)重
    發(fā)表于 10-20 08:00

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡(jiǎn)介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計(jì)理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的神經(jīng)結(jié)構(gòu),盡管這種微生物的
    的頭像 發(fā)表于 09-28 10:03 ?649次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測(cè)皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    自動(dòng)駕駛感知系統(tǒng)中卷積神經(jīng)網(wǎng)絡(luò)原理的疑點(diǎn)分析

    背景 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)的核心技術(shù)主要包括以下幾個(gè)方面:局部連接、權(quán)值共享、多卷積核以及池化。這些技術(shù)共同作用,使得CNN在圖像
    的頭像 發(fā)表于 04-07 09:15 ?630次閱讀
    自動(dòng)駕駛感知系統(tǒng)中<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>原理的疑點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?1284次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機(jī)器學(xué)習(xí)模型,具有顯著的優(yōu)點(diǎn),同時(shí)也存在一些不容忽視的缺點(diǎn)。以下是對(duì)BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點(diǎn)的分析: 優(yōu)點(diǎn)
    的頭像 發(fā)表于 02-12 15:36 ?1531次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1259次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1328次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個(gè)核心過程。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)基本原理的介紹: 一、網(wǎng)絡(luò)結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:13 ?1490次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?2224次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法