chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于DNN模型的ADS深度學(xué)習(xí)算法選型探討

sakobpqhz ? 來源:Dr. Luo ? 2023-01-31 14:06 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

對于自動(dòng)駕駛ADS行業(yè)而言,其核心演進(jìn)趨勢可以定義為群體智能的社會(huì)計(jì)算,簡單表述為,用NPU大算力和去中心化計(jì)算來虛擬化駕駛環(huán)境,通過數(shù)字化智能體即自動(dòng)駕駛車輛AV的多模感知交互決策,以及車車協(xié)同,車路協(xié)同,車云協(xié)同,通過跨模數(shù)據(jù)融合、高清地圖重建、云端遠(yuǎn)程智駕等可信計(jì)算來構(gòu)建元宇宙中ADS的社會(huì)計(jì)算能力。

ADS算法的典型系統(tǒng)分層架構(gòu)一般包括傳感層,感知層,定位層,決策層(預(yù)測+規(guī)劃)和控制層。每個(gè)層面會(huì)采用傳統(tǒng)算法模型或者是與深度學(xué)習(xí)DNN模型相結(jié)合,從而在ADS全程駕駛中提供人類可以認(rèn)可的高可靠和高安全性,以及在這個(gè)基礎(chǔ)上提供最佳能耗比、最佳用車體驗(yàn)、和用戶社交娛樂等基本功能。

01基于DNN模型的感知算法

ADS部署的傳感器在極端惡劣場景(雨雪霧、低照度、高度遮擋、傳感器部分失效、主動(dòng)或被動(dòng)場景攻擊等)的影響程度是不一樣的。所以傳感器組合應(yīng)用可以來解決單傳感器的感知能力不足問題,常用的多模傳感器包括Camera(Front-View or Multiview orSurround-View; Mono or Stereo;LD or HD),毫米波Radar(3Dor4D)和激光雷達(dá)LIDAR(LDorHD)。ADS的一個(gè)主要挑戰(zhàn)是多模融合感知,即如何在感知層能夠有效融合這些多模態(tài)傳感器的輸出,配合高清HD地圖或其它方式定位信息,對應(yīng)用場景中的交通標(biāo)識(shí),動(dòng)態(tài)目標(biāo)屬性(位置、速度、方向、高度、行為),紅綠燈狀態(tài),車道線,可駕駛區(qū)域,進(jìn)行特征提取共享和多任務(wù)的2D/3D目標(biāo)檢測、語義分割、在線地圖構(gòu)建、Occupancy特征和語義提取(Volume/Flow/Surface)等等?;贒NN模型的感知算法,在實(shí)際工程部署中的一個(gè)挑戰(zhàn),還需要解決圖 1所示的三個(gè)方向關(guān)鍵難題:數(shù)據(jù)挑戰(zhàn)、模型挑戰(zhàn)、和復(fù)雜場景挑戰(zhàn)。

c25bf032-96d4-11ed-bfe3-dac502259ad0.png ?

圖 1DL算法在智能交通ITS和自動(dòng)駕駛領(lǐng)域ADS的部署挑戰(zhàn)(Azfar 2022) 目前大多數(shù)AI視覺感知任務(wù),包括目標(biāo)檢測跟蹤分類識(shí)別,場景語義分割和目標(biāo)結(jié)構(gòu)化,其算法流程都可以簡單總結(jié)為特征抽取,特征增強(qiáng)和特征融合,然后在特征空間進(jìn)行(采樣)重建,最后進(jìn)行多任務(wù)的各類檢測識(shí)別與語義理解。以目標(biāo)檢測任務(wù)為例,一個(gè)主要的發(fā)展趨勢,是從CNN (Compute-bound)向 Transformer (memory-bound)演進(jìn)。CNN目標(biāo)檢測方法包括常用的Two-Stage Candidate-based常規(guī)檢測方法(Faster-RCNN)和One-Stage Regression-based 快速檢測方法(YOLO, SSD, RetinaNet, CentreNet)。

Transformer目標(biāo)檢測方法包括DETR, Vision Transformer, Swin Transformer, DTR3D, BEVFormer, BEVFusion等等。兩者之間的主要差別是目標(biāo)感知場的尺寸,前者是局部視野,側(cè)重目標(biāo)紋理,后者是全局視野,從全局特征中進(jìn)行學(xué)習(xí),側(cè)重目標(biāo)形狀。可以看出針對各類模型包括混合模型和通過NAS架構(gòu)搜索生成的模型,學(xué)術(shù)界和工業(yè)界在持續(xù)推陳出新,高速迭代,依舊呈現(xiàn)出多元多樣化態(tài)勢,但如何有效進(jìn)行模型選型,以及模型小型化和工程化加速,一直是ADS產(chǎn)業(yè)算法能否成功落地的核心難題。

02基于DNN模型的決策算法

基于DNN模型的決策算法,是一種在數(shù)據(jù)充分的條件下,通過少量的人力投入就可以提供非常有力的設(shè)計(jì)表達(dá)。尤其是針對社交關(guān)系建模與推理來解決ADS中預(yù)測與規(guī)劃問題,通過監(jiān)督和自監(jiān)督學(xué)習(xí)的方式,單獨(dú)或者聯(lián)合建模的方式,以及模仿學(xué)習(xí)IL和強(qiáng)化學(xué)習(xí)RL的學(xué)習(xí)流程。交互建模的輸入來自車輛狀態(tài),包括定位信息,速度,加速度,角速度,車輛朝向等。端到端的DL-based方法通常直接通過卷積處理原始傳感數(shù)據(jù)(RGB圖像和點(diǎn)云),計(jì)算簡潔但會(huì)損失弱的或者隱含的交互推理的內(nèi)容表達(dá)。如圖 2所示,深度學(xué)習(xí)模型中的不同構(gòu)建模塊,是可以對多智能體的交互推理進(jìn)行有效建模和表達(dá)的,其中

(a)全連接FC層:又稱多層感知器MLP,其中所有輸入通過連接可以與輸出交互并對輸出做出貢獻(xiàn)。 (b)卷積CONV層:卷積層采用局部感知場,所以每層的連接會(huì)比較稀疏,通常假定合適用來捕獲空間關(guān)系,最初的底層卷積層一般提取類似邊緣紋理類的信息,越接近頂層也偏語義特征。 (c)遞歸Recurrent層 :通常用來處理時(shí)間維度的數(shù)據(jù)序列,多用來捕獲時(shí)間關(guān)系。 (d)圖Graph層:典型的圖包括節(jié)點(diǎn)、邊(用來描述節(jié)點(diǎn)間關(guān)系)、和上下文全局屬性,通常用來捕獲圖結(jié)構(gòu)表征中顯性關(guān)系推理,與FC層和RNN層一個(gè)不同之處是輸入的先后次序不會(huì)影響結(jié)構(gòu),圖結(jié)構(gòu)還可以處理不同數(shù)目的個(gè)體,比較適合多個(gè)體的ADS環(huán)境。

c2b26cd2-96d4-11ed-bfe3-dac502259ad0.png ?

圖 2DNN模塊對多智能體交互的建模案例(Wang 2022) 對于ADS中社交特征表征,常用的有空間時(shí)間狀態(tài)特征矢量,空間占用方格和圖區(qū)域動(dòng)態(tài)插入等方式??諘r(shí)狀態(tài)特征矢量比較難以定義,尤其是個(gè)體數(shù)量變化和有效時(shí)間步長的不同,另外一個(gè)限制是依賴于個(gè)體插入的次序。所以一個(gè)常用的設(shè)計(jì)思路是采用占用方格地圖Occupancy Grid Map (OGM)來解決上述的兩個(gè)問題。OGM是以本體ego agent為中心來構(gòu)建空間方格圖,可以處理ROI區(qū)域不同數(shù)目的智能體。OGM通常采用原始狀態(tài)(定位,速度,加速度)或者采用FC層來進(jìn)行狀態(tài)編碼,如果FC層隱層包括個(gè)體的歷史軌跡信息,可以同時(shí)捕獲空間時(shí)間信息。

OGM的分辨率對計(jì)算性能影響比較大。 相對而言,圖網(wǎng)絡(luò)GNN可以通過動(dòng)態(tài)插入?yún)^(qū)域DIA抽取來更好地構(gòu)建空間時(shí)間交互圖關(guān)系,圖的類型可以基于個(gè)體(車輛,行人,機(jī)動(dòng)車等),也可以基于區(qū)域area,后者主要聚焦對車輛意圖(車道保持,換道并道,左拐右拐)的表征,這里DIA指的是可駕駛場景中空閑空隔。如圖 3所示,DIA的優(yōu)勢在于對環(huán)境中靜態(tài)元素(道路拓?fù)?,類似stop道路標(biāo)志牌等)和動(dòng)態(tài)元素(行駛車輛)非常靈活,可以認(rèn)為是動(dòng)態(tài)環(huán)境的統(tǒng)一表征或者也可以叫做環(huán)境的虛擬化。所有時(shí)間地平線的DIAs可以用來構(gòu)建空間時(shí)間語義圖。

c2edc52a-96d4-11ed-bfe3-dac502259ad0.png ?

圖 3動(dòng)態(tài)插入?yún)^(qū)域抽取和場景語義圖構(gòu)建案例(Wang 2022) 如圖 2所示,群體智能的社會(huì)計(jì)算,其中的社交關(guān)系,可以采用不同的深度學(xué)習(xí)層來進(jìn)行交互建模和編碼:

FC層交互編碼:采用將不同個(gè)體的特征進(jìn)行拉平,拼接成一個(gè)向量。多用來對單體single agent進(jìn)行運(yùn)動(dòng)和意圖建模,很少用于multiple agent。

CONV層交互編碼:將空間時(shí)間特征(狀態(tài)特征張量)或占用方格地圖做為CNN輸入來進(jìn)行交互編碼。

Recurrent層交互編碼:多采用LSTM來進(jìn)行時(shí)間維度推理,編碼產(chǎn)生的embedding張量可以捕獲時(shí)間空間的交互信息。

Graph層交互編碼:對多智能體之間的關(guān)系采用節(jié)點(diǎn)之間的無向或者有向邊來表征,可以用消息傳遞機(jī)制來進(jìn)行交互學(xué)習(xí),每個(gè)節(jié)點(diǎn)通過聚集鄰近節(jié)點(diǎn)的特征來更新自身的屬性特征。

在實(shí)際設(shè)計(jì)中,多將Recurrent層和Graph層相結(jié)合,可以很好地處理時(shí)間信息。而注意力attention機(jī)制編碼可以更好地量化一個(gè)特征如何影響其它特征。人類司機(jī)會(huì)在交互場景中有選擇地選取其它個(gè)體來進(jìn)行關(guān)注,包括其過去現(xiàn)在的信息和未來的預(yù)判。所以注意力機(jī)制編碼可以基于時(shí)間域(短期的和長期的)和空間域(本地的和偏遠(yuǎn)的),在上述方法中通過加權(quán)方案分別進(jìn)行應(yīng)用。對個(gè)體的注意力建模,可以采用基于距離的方法,這意味著其它個(gè)體越近,關(guān)注度也越高。 綜上所述,DL-based方法由于模塊化的設(shè)計(jì)和海量數(shù)據(jù)貢獻(xiàn),性能占優(yōu),但如何能夠提供模型的安全能力和大規(guī)模部署,需要解決幾個(gè)挑戰(zhàn):在保證性能基礎(chǔ)上改善可解釋性;在不同的駕駛個(gè)體,場景和態(tài)勢下繼續(xù)增強(qiáng)模型的推廣能力;模型選型和工程實(shí)現(xiàn)如何有效加速落地問題。

03CNN與Transformer選型對比探討

Transformer或Transformer + CNN + RNN混合模型選型呈現(xiàn)出了高效的算法性能,對應(yīng)在工程實(shí)現(xiàn)上也開始主導(dǎo)整個(gè)ADS行業(yè)市場。Transformer采用Attention機(jī)制的主干網(wǎng)絡(luò),而CNN在特征提取和變換上由Convolution來主導(dǎo),深度理解兩種模型的主要收益到底來自什么樣的算法模塊或者算子,對ADS主流算法的未來演進(jìn),可能會(huì)有一種積極的推動(dòng)作用。

一種看法(Dai 2022)認(rèn)為,這主要的差別來自特征變換模塊(Attention vs Convolution)對空間特征聚類的處理方式,即所謂的Spatial Token Mixer(STM)問題。當(dāng)前常用構(gòu)建DNN網(wǎng)絡(luò)模型包括Attention, Convolution, Hybrid等模塊的多種變形,以分類算法為例,先后有HaloNet(Halo Attention), PVT(Spatial Reduction Attention, 2021), Swin Transformer(Shifted Window Attention, 2021), ConvNeXt(7x7 Depth-Wise Convolution, 2022), InternImage (Deformable Convolution v3, 2022)等SOTA模型出世。

c327a484-96d4-11ed-bfe3-dac502259ad0.png ? c334f422-96d4-11ed-bfe3-dac502259ad0.png ?

圖 4特征變換模塊的實(shí)現(xiàn)案例(Dai 2022) 如圖 4所示,CNN和Transformer模型中最常用的四種STM算子類型包括:Local Attention, Global Attention, Depth-Wise Convolution, Dynamic Convolution。采用固定感知場的Static Convolution只在小容量模型(~5MB參數(shù))中表現(xiàn)不錯(cuò),而Local-Attention STM模型結(jié)合跨窗間信息轉(zhuǎn)移策略可以顯著提升性能。

STM的設(shè)計(jì)也反映了假定空間即歸納偏置中采用的先驗(yàn)知識(shí)和約束條件對模型學(xué)習(xí)的影響,包括局部特性Locality、平移不變性,旋轉(zhuǎn)不變性和尺寸不變性等模型特性,這可以從有效感知場ERF與下游多任務(wù)學(xué)習(xí)的關(guān)聯(lián)關(guān)系來體現(xiàn),有趣的是,當(dāng)上調(diào)模型參數(shù)時(shí),擴(kuò)大ERF反而會(huì)導(dǎo)致模型飽和,同樣我們工程實(shí)現(xiàn)中也觀察到,對特征提取backbone而言用CNN來替代Transformer Encoder進(jìn)行推理加速,也有類似模型飽和問題和上下游任務(wù)匹配不齊的問題。

至于對于各類目標(biāo)不變性的性能對比,性能高的模型,對不同場景變化的魯棒性會(huì)好一些,Static Convolution采用權(quán)值共享和局部感知場有利于提升平移不變性,而靈活的采樣策略可以動(dòng)態(tài)地進(jìn)行特征聚類,在動(dòng)態(tài)卷積(例如DCNv3)中表現(xiàn)出更好的旋轉(zhuǎn)和尺寸縮放不變性。 Convolution-based STM模型多采用如下架構(gòu):Residual Learning, Dense Connection, Grouping, Spatial Attention,Channel Attention。其中Spatial Attention采用Deformable Convolution和Non-Local算子采用靈活可變的點(diǎn)采樣來構(gòu)建長范圍的依賴語義依賴關(guān)系。

Vision Transformer的出世也給這類設(shè)計(jì)帶來了新的架構(gòu)設(shè)計(jì)和探索思路。 對于Attention-based STM模型,比較而言,Transformer采用的全局感知場和動(dòng)態(tài)的空間聚類,也帶來了海量的計(jì)算復(fù)雜度,尤其是ADS 應(yīng)用中需要場景覆蓋的計(jì)算區(qū)域越來越大時(shí),這對ADS NPU的加速設(shè)計(jì)引入了一個(gè)全新課題。

從算法角度而言,圖 4所示的幾個(gè)算法,也采用了類似CNN的Local Attention機(jī)制,例如采用非重疊的局部計(jì)算窗和金字塔結(jié)構(gòu),以及跨窗間信息遷移的機(jī)制,例如Haloing,Shifted Windows等等,當(dāng)前還有一種新的設(shè)計(jì)思路采用CNN和Transformer算子塊的交織實(shí)現(xiàn)方式,也可以稱作為聯(lián)合或者混合架構(gòu),可以很好的融合CNN和Transformer的各自優(yōu)勢,適當(dāng)降低總體計(jì)算復(fù)雜度。而NAS網(wǎng)絡(luò)架構(gòu)檢索可以采用更加靈活的算子組合的策略,當(dāng)然這顯然增加了硬件計(jì)算架構(gòu)和數(shù)據(jù)流優(yōu)化的設(shè)計(jì)難度。







審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • RGB
    RGB
    +關(guān)注

    關(guān)注

    4

    文章

    826

    瀏覽量

    61692
  • ADS仿真
    +關(guān)注

    關(guān)注

    2

    文章

    71

    瀏覽量

    11089
  • dnn
    dnn
    +關(guān)注

    關(guān)注

    0

    文章

    61

    瀏覽量

    9476
  • MLP
    MLP
    +關(guān)注

    關(guān)注

    0

    文章

    57

    瀏覽量

    4951

原文標(biāo)題:ADS深度學(xué)習(xí)算法選型探討

文章出處:【微信號(hào):算力基建,微信公眾號(hào):算力基建】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    機(jī)器學(xué)習(xí)深度學(xué)習(xí)中需避免的 7 個(gè)常見錯(cuò)誤與局限性

    無論你是剛?cè)腴T還是已經(jīng)從事人工智能模型相關(guān)工作一段時(shí)間,機(jī)器學(xué)習(xí)深度學(xué)習(xí)中都存在一些我們需要時(shí)刻關(guān)注并銘記的常見錯(cuò)誤。如果對這些錯(cuò)誤置之不理,日后可能會(huì)引發(fā)諸多麻煩!只要我們密切關(guān)注
    的頭像 發(fā)表于 01-07 15:37 ?109次閱讀
    機(jī)器<b class='flag-5'>學(xué)習(xí)</b>和<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>中需避免的 7 個(gè)常見錯(cuò)誤與局限性

    穿孔機(jī)頂頭檢測儀 機(jī)器視覺深度學(xué)習(xí)

    頂頭狀態(tài)。 檢測頂頭算法 引入人工智深度學(xué)習(xí)技術(shù),通過Keras實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)(CNN),用Numpy實(shí)現(xiàn)采集數(shù)據(jù)的訓(xùn)練,得到符合現(xiàn)場需求的模型,進(jìn)一步提升檢測的準(zhǔn)確性和現(xiàn)場的適應(yīng)性
    發(fā)表于 12-22 14:33

    深度剖析ADS1242和ADS1243:高精度ADC的卓越之選

    深度剖析ADS1242和ADS1243:高精度ADC的卓越之選 在電子工程師的日常工作中,高精度模擬 - 數(shù)字轉(zhuǎn)換器(ADC)的選擇至關(guān)重要,它直接影響到系統(tǒng)的性能和精度。今天,我們就來深入
    的頭像 發(fā)表于 12-10 10:00 ?374次閱讀

    【團(tuán)購】獨(dú)家全套珍藏!龍哥LabVIEW視覺深度學(xué)習(xí)實(shí)戰(zhàn)課(11大系列課程,共5000+分鐘)

    、GPU加速訓(xùn)練(可選) 雙軌教學(xué):傳統(tǒng)視覺算法+深度學(xué)習(xí)方案全覆蓋 輕量化部署:8.6M超輕OCR模型,適合嵌入式設(shè)備集成 無監(jiān)督學(xué)習(xí):無
    發(fā)表于 12-04 09:28

    【團(tuán)購】獨(dú)家全套珍藏!龍哥LabVIEW視覺深度學(xué)習(xí)實(shí)戰(zhàn)課程(11大系列課程,共5000+分鐘)

    、GPU加速訓(xùn)練(可選) 雙軌教學(xué):傳統(tǒng)視覺算法+深度學(xué)習(xí)方案全覆蓋 輕量化部署:8.6M超輕OCR模型,適合嵌入式設(shè)備集成 無監(jiān)督學(xué)習(xí):無
    發(fā)表于 12-03 13:50

    ADS1274/ADS1278:高性能多通道ADC的深度剖析與應(yīng)用指南

    - Sigma ADC,它們?yōu)楣こ處焸兲峁┝藦?qiáng)大而靈活的解決方案。今天,我們就來深入探討一下這兩款A(yù)DC的特點(diǎn)、功能以及應(yīng)用中的注意事項(xiàng)。 文件下載: ads1274.pdf 一、產(chǎn)品概述
    的頭像 發(fā)表于 11-27 15:54 ?648次閱讀
    <b class='flag-5'>ADS</b>1274/<b class='flag-5'>ADS</b>1278:高性能多通道ADC的<b class='flag-5'>深度</b>剖析與應(yīng)用指南

    如何深度學(xué)習(xí)機(jī)器視覺的應(yīng)用場景

    深度學(xué)習(xí)視覺應(yīng)用場景大全 工業(yè)制造領(lǐng)域 復(fù)雜缺陷檢測:處理傳統(tǒng)算法難以描述的非標(biāo)準(zhǔn)化缺陷模式 非標(biāo)產(chǎn)品分類:對形狀、顏色、紋理多變的產(chǎn)品進(jìn)行智能分類 外觀質(zhì)量評(píng)估:基于學(xué)習(xí)的外觀質(zhì)量標(biāo)
    的頭像 發(fā)表于 11-27 10:19 ?163次閱讀

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+第二章 實(shí)現(xiàn)深度學(xué)習(xí)AI芯片的創(chuàng)新方法與架構(gòu)

    矩陣乘法的算法 ①矩陣乘法的各種算法 ②優(yōu)化矩陣乘法過程的新方法 ③加速矩陣乘法的新算法 1)用學(xué)習(xí)替代乘法 2)用加法代替矩陣乘法 3)只用加法的大
    發(fā)表于 09-12 17:30

    自動(dòng)駕駛中Transformer大模型會(huì)取代深度學(xué)習(xí)嗎?

    [首發(fā)于智駕最前沿微信公眾號(hào)]近年來,隨著ChatGPT、Claude、文心一言等大語言模型在生成文本、對話交互等領(lǐng)域的驚艷表現(xiàn),“Transformer架構(gòu)是否正在取代傳統(tǒng)深度學(xué)習(xí)”這一話題一直被
    的頭像 發(fā)表于 08-13 09:15 ?4040次閱讀
    自動(dòng)駕駛中Transformer大<b class='flag-5'>模型</b>會(huì)取代<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>嗎?

    模型推理顯存和計(jì)算量估計(jì)方法研究

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)模型在各個(gè)領(lǐng)域得到了廣泛應(yīng)用。然而,大模型的推理過程對顯存和計(jì)算資源的需求較高,給實(shí)際應(yīng)用帶來了挑戰(zhàn)。為了解決這一問題,本文將
    發(fā)表于 07-03 19:43

    模型時(shí)代的深度學(xué)習(xí)框架

    作者:算力魔方創(chuàng)始人/英特爾創(chuàng)新大使劉力 在 CNN時(shí)代 ,AI模型的參數(shù)規(guī)模都在百萬級(jí)別,僅需在單張消費(fèi)類顯卡上即可完成訓(xùn)練。例如,以業(yè)界知名的CNN模型: ResNet50 為例,模型參數(shù)
    的頭像 發(fā)表于 04-25 11:43 ?767次閱讀
    大<b class='flag-5'>模型</b>時(shí)代的<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>框架

    用樹莓派搞深度學(xué)習(xí)?TensorFlow啟動(dòng)!

    介紹本頁面將指導(dǎo)您在搭載64位Bullseye操作系統(tǒng)的RaspberryPi4上安裝TensorFlow。TensorFlow是一個(gè)專為深度學(xué)習(xí)開發(fā)的大型軟件庫,它消耗大量資源。您可以在
    的頭像 發(fā)表于 03-25 09:33 ?1083次閱讀
    用樹莓派搞<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>?TensorFlow啟動(dòng)!

    在OpenVINO?工具套件的深度學(xué)習(xí)工作臺(tái)中無法導(dǎo)出INT8模型怎么解決?

    無法在 OpenVINO? 工具套件的深度學(xué)習(xí) (DL) 工作臺(tái)中導(dǎo)出 INT8 模型
    發(fā)表于 03-06 07:54

    機(jī)器學(xué)習(xí)模型市場前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 02-13 09:39 ?689次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)的定義與發(fā)展
    的頭像 發(fā)表于 02-12 15:15 ?1605次閱讀