chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

LLM性能的主要因素

深度學習自然語言處理 ? 來源:深度學習自然語言處理 ? 2023-05-22 15:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

現(xiàn)在是2023年5月,截止目前,網(wǎng)絡(luò)上已經(jīng)開源了眾多的LLM,如何用較低的成本,判斷LLM的基礎(chǔ)性能,選到適合自己任務(wù)的LLM,成為一個關(guān)鍵。

本文會涉及以下幾個問題:

影響LLM性能的主要因素

目前主要的模型的參數(shù)

LLaMA系列是否需要擴中文詞表

不同任務(wù)的模型選擇

影響LLM性能的主要因素

91aeae64-f70c-11ed-90ce-dac502259ad0.png

Scaling Laws for Neural Language Models

OpenAI的論文Scaling Laws中列舉了影響模型性能最大的三個因素:計算量、數(shù)據(jù)集大小、模型參數(shù)量。也就是說,當其他因素不成為瓶頸時,計算量、數(shù)據(jù)集大小、模型參數(shù)量這3個因素中的單個因素指數(shù)增加時,loss會線性的下降。同時,DeepMind的研究也得出來和OpenAI類似的結(jié)論。那么我們可以基本確定,如果一個模型在這3個方面,均做的不錯,那么將會是一個很好的備選。

模型參數(shù)量是我們最容易注意到的,一般而言,LLM也只在訓練數(shù)據(jù)上訓練1個epoch(如果還有算力,其實可以擴更多的新數(shù)據(jù)),那么,數(shù)據(jù)集的大小就是很關(guān)鍵的參數(shù)。訓練OPT-175B的Susan Zhang在Stanford分享的時候,也提到了,如果能夠重新再來一次,她會選擇much much more data??梢姅?shù)據(jù)量的重要性。

了解到Scaling Laws之后,為了降低模型的推理成本,可以在模型參數(shù)量降低的同時,增加訓練的數(shù)據(jù)量,這樣可以保證模型的效果。Chinchilla和LLaMA就是這樣的思路。

除了以上的因素之外,還有一個比較大的影響因素就是數(shù)據(jù)質(zhì)量。

91b47d26-f70c-11ed-90ce-dac502259ad0.png

Instruction Tuning with GPT-4

在微軟的論文中指出,同樣基于LLaMA模型,使用GPT3和GPT4產(chǎn)生的數(shù)據(jù),對模型進行Instruction Turing,可以看到GPT4的數(shù)據(jù)微調(diào)過的模型效果遠遠好于GPT3數(shù)據(jù)微調(diào)的模型,可見數(shù)據(jù)質(zhì)量帶來的影響。同樣的,Vicuna的Instruction Turing中,也對shareGPT的數(shù)據(jù)做了很細致的清洗工作。

所以,如果沒有數(shù)量級的差異,在Instruction Turing的時候,可以盡可能拋棄質(zhì)量差的數(shù)據(jù),保留高質(zhì)量的數(shù)據(jù)。

目前主要的模型的參數(shù)

訓練數(shù)據(jù)量 參數(shù)
LLaMA 1T~1.4T tokens 7B~65B
chatGLM-6B 1T tokens 6B

根據(jù)我們上面的推理,訓練數(shù)據(jù)量是對模型影響最關(guān)鍵的因素。LLaMA和chatGLM-6B是目前效果相對比較好的LLM,他們的訓練數(shù)據(jù)都達到了至少1T tokens。那么如果一個LLM的訓練數(shù)據(jù)量,少于1T tokens數(shù)的話,這個模型可以不用考慮了。

而LLaMA的參數(shù)量可以有7B、13B、33B、65B可以選擇,那么在參數(shù)量上和可選擇性上,比chatGLM要更優(yōu)秀。那么,基于這些考慮,LLaMA系列及其變種,是當前更好的選擇。而且,經(jīng)過Instruction Turing之后,Vicuna已經(jīng)表現(xiàn)出了非常好的性能,根據(jù)微軟的論文(不是伯克利自己的論文),Vicuna已經(jīng)達到90%的GPT4的效果。這一點和伯克利自己的結(jié)論也吻合。

在Vicuna的作者的博客中,作者也提到了vicuna-13B會比vicuna-7B效果好很多。筆者自己微調(diào)過這兩個模型,13B確實會比7B的準確率高出5-10%。

同時,int8量化的Vicuna-13B在推理時,只需要20GB的顯存,可以放進很多消費級的顯卡中。

這么看起來,Vicuna-13B確實是一個很強的baseline,目前看到的開源LLM,只有WizardVicunaLM 的效果更優(yōu)于Vicuna-13B。如果你沒有很多時間調(diào)研,那么vicuna-13B會是一個不錯的備選。

LLaMA系列是否需要擴中文詞表

關(guān)于LLaMA的一個爭論就是,LLaMA的base model是在以英語為主要語言的拉丁語系上進行訓練的,中文效果會不會比較差?還有就是,LLaMA詞表中的中文token比較少,需不需要擴詞表?

針對問題一,微軟的論文中已經(jīng)驗證了,經(jīng)過Instruction Turing的Vicuna-13B已經(jīng)有非常好的中文能力。

91bb49f8-f70c-11ed-90ce-dac502259ad0.png

Instruction Tuning with GPT-4

那為什么沒有在很多中文語料上訓練過的LLaMA,能有這么好的中文能力呢?首先,在GPT4的技術(shù)報告中提到,即使在數(shù)據(jù)量很少的語言上,GPT4也有非常好的性能。

91c2499c-f70c-11ed-90ce-dac502259ad0.png

GPT-4 Technical Report

LLM表現(xiàn)出了驚人的跨語言能力。我猜其中一個比較重要的原始是采用了byte-level BPE算法構(gòu)建詞表。這種BBPE算法,將很多字符都拆分到byte級別。比如,雖然詞表中沒有對應(yīng)的中文字符,但是可以通過組合byte,構(gòu)建出來原始的中文字符。這部分可以參考文章Dylan:[分析] 淺談ChatGPT的Tokenizer。因此,經(jīng)過超大規(guī)模的語料訓練之后,LLM可以跨不同的語言,表現(xiàn)出很好的性能。

采用BBPE的好處是可以跨語言共用詞表,顯著壓縮詞表的大小。而壞處就是,對于類似中文這樣的語言,一段文字的序列長度會顯著增長。因此,很多人會想到擴中文詞表。但考慮到擴詞表,相當于從頭初始化開始訓練這些參數(shù)。因此,參考第一節(jié)的結(jié)論,如果想達到比較好的性能,需要比較大的算力和數(shù)據(jù)量。如果沒有很多數(shù)據(jù)和算力,就不太建議這么搞。

根據(jù)開源項目Chinese-LLaMA-Alpaca公布的數(shù)據(jù),他們在使用120G的中文語料后(下圖中的Alpaca-Plus-7B和Alpaca-Plus-13B),效果才有不錯的提升,而在使用20G語料時(下圖中的Alpaca-13B),效果還相對比較差。作為對比,原始的LLaMA使用的數(shù)據(jù)量大概是4T左右(此處是存儲空間,不是token數(shù))。

91ca7bd0-f70c-11ed-90ce-dac502259ad0.png

Chinese-LLaMA-Alpaca

因此,雖然擴詞表看起來很誘人,但是實際操作起來,還是很有難度的,不過如果你有很多數(shù)據(jù)和算力,這個當我沒說(不是)。

不同任務(wù)的模型選擇

上文還提到,LLaMA系列的一大優(yōu)勢是,有很多不同大小的模型,從7B-65B。上面我們主要討論了13B的模型,還有33B和65B的模型沒有討論。那什么場景下,13B的模型也不夠,需要更大的模型呢?

答案就是,只要你的算力可以支持,就建議上更大的模型。

91d1a126-f70c-11ed-90ce-dac502259ad0.png

GPTQ-for-LLaMa

根據(jù)GPTQ-for-LLaMa 的數(shù)據(jù),可以看到隨著模型的增大,模型在wiki2數(shù)據(jù)上的困惑度一直在下降。更重要的是,LLaMA-33B經(jīng)過int4量化之后,PPL低于LLaMA-13B!LLaMA-65B經(jīng)過int4量化之后,PPL低于LLaMA-33B!并且,LLaMA-33B經(jīng)過int4量化之后,推理只需要20GB的顯存?。?!

看到這個數(shù)據(jù),我著實有點小激動。然后立馬開始著手微調(diào)33B的模型?。。?/p>

當然,從推理成本的角度來看,模型參數(shù)量越小,成本越低。那什么情況下可以用小模型呢?回答是,需要根據(jù)任務(wù)的難易程度選擇模型大小,如果任務(wù)很簡單,其實小模型就OK。比如處理一些比較簡單的中文任務(wù),chatGLM-6B將會更合適。中文詞表,再加上推理更好的優(yōu)化,可以極大降低推理成本。

但如果任務(wù)很難,對于語義的理解程度很高,那么肯定是模型越大效果越好。有什么任務(wù)是比較難的任務(wù)呢?我們來看看什么任務(wù)讓GPT4的覺得比較困難。

91d91514-f70c-11ed-90ce-dac502259ad0.png

GPT-4 Technical Report

可以看到,GPT4表現(xiàn)最差的幾個項目分別是Codeforces Rating、AP English Literature、AMC 10和AP English Language(AP是Advanced Placement,美國大學先修課程)。其中有兩個分別是代碼測試和數(shù)學測試,語言模型(LM)表現(xiàn)比較差符合預期。但是作為地表最強語言模型,在English Literature和English Language的考試中,這樣的表現(xiàn),是讓人有點意外的。不過,話說回來,OpenAI對于GPT4的定位,還是一個工具型助手,而不是一個寫文學性文字的模型。RLHF的作用,也是讓模型,盡可能符合人對它的instruction。

因此,如果你的任務(wù)是,讓LLM去寫偏文學性的文章,應(yīng)該要注意兩個方面:1、任務(wù)本身有難度,盡可能上能力范圍內(nèi)的參數(shù)量更大的模型;2、數(shù)據(jù)層面,不要使用Instruction Turing的數(shù)據(jù) ,而需要自己去找合適的高質(zhì)量數(shù)據(jù)集。

審核編輯:彭靜
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3611

    瀏覽量

    51431
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1229

    瀏覽量

    25916
  • GPT
    GPT
    +關(guān)注

    關(guān)注

    0

    文章

    368

    瀏覽量

    16597
  • LLM
    LLM
    +關(guān)注

    關(guān)注

    1

    文章

    337

    瀏覽量

    1143

原文標題:大模型選型的一點思考

文章出處:【微信號:zenRRan,微信公眾號:深度學習自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    影響SNR損失的主要因素有哪些?

    影響SNR 損失(由信號縮放引入)的主要因素有哪些,如何對其進行定量分析,以及更重要的是:如何把這種影響降至最低。
    發(fā)表于 03-11 06:36

    請問影響絕緣電阻測量值的主要因素是什么?

    影響絕緣電阻測量值的主要因素是什么? 兆歐表使用不當?shù)挠绊懯鞘裁矗?/div>
    發(fā)表于 04-09 06:58

    請問影響磨削變質(zhì)層的主要因素有哪些?

    滾動軸承工作表面質(zhì)量研究包括什么?影響磨削變質(zhì)層的主要因素有哪些?
    發(fā)表于 04-20 07:35

    請問PCB價格的主要因素有哪些?

    PCB價格的主要因素有哪些?
    發(fā)表于 04-21 06:37

    影響OTDR測試誤差的主要因素有哪些?

    本文為您總結(jié)了影響OTDR測試誤差的四大類主要因素。
    發(fā)表于 04-29 06:50

    影響絕緣電阻測量值的主要因素是什么?

    影響絕緣電阻測量值的主要因素是什么?兆歐表使用不當?shù)挠绊懯鞘裁矗?/div>
    發(fā)表于 05-08 09:14

    選擇測試設(shè)備時需要考慮的主要因素有哪些?

    選擇測試設(shè)備時需要考慮的主要因素有哪些?混合信號設(shè)計中常見的問題有哪些?
    發(fā)表于 05-18 06:13

    決定仿真精度的主要因素

    決定仿真精度的主要因素是模型本身的精度,其次還有仿真器算法、仿真精度設(shè)置等。模型精度與軟件沒有直接關(guān)系。但比較SABER的MAST與PSpice的模型,對常用的TEMPLATE(如RLC、變壓器等
    發(fā)表于 11-11 09:07

    影響步進電機性能主要因素有哪些?

    中非常重要的。  總的來說,影響步進電機性能主要因素有驅(qū)動方式、驅(qū)動電壓、驅(qū)動電流、靜力矩。除此之外,還應(yīng)該考慮距頻特性、相數(shù)和空載起動頻率,因為其都是影響步進電機性能的重要因素,所
    發(fā)表于 03-10 10:33

    影響ADSL線路質(zhì)量的主要因素

    影響ADSL線路質(zhì)量的主要因素    ADSL信號和基本音頻電話信號(4KHz以下)通過普通電話業(yè)務(wù)分離器無源耦合到普
    發(fā)表于 10-20 09:04 ?2228次閱讀

    影響LED發(fā)光效率的主要因素

    影響LED發(fā)光效率的主要因素 1、熒光粉顆粒度的大小 如果顆粒度比較大,將直接降低光強,以及點膠的難
    發(fā)表于 05-09 08:58 ?2945次閱讀

    影響手機待機時間的主要因素

    影響手機待機時間的主要因素
    發(fā)表于 12-19 11:22 ?724次閱讀

    影響電機結(jié)構(gòu)的主要因素有哪些

    影響電機結(jié)構(gòu)的主要因素是兩個方面:一個是導磁材料性能,一個是導體材料性能。如果導體材料的導電性能好,我們就可以減小導線的線徑,可以在磁場中,增加單位體積內(nèi)的導線數(shù)量,電動機產(chǎn)生的電動力
    的頭像 發(fā)表于 03-15 17:25 ?5657次閱讀

    影響光纖跳線管理的4種主要因素

    要想管理后的光纖跳線靈活多變,井井有序,首先要了解影響光纖跳線性能的一些因素。這里將介紹4種影響光纖跳線管理的主要因素。
    的頭像 發(fā)表于 03-29 17:15 ?2333次閱讀
    影響光纖跳線管理的4種<b class='flag-5'>主要因素</b>

    影響放大電路高頻特性的主要因素

    影響放大電路高頻特性的主要因素? 放大電路是電子電路中最基本的構(gòu)件之一,它在現(xiàn)代通信、音頻、視頻等領(lǐng)域扮演著至關(guān)重要的角色,并且在進一步提高其性能方面也一直是研究的熱點。而放大電路的高頻特性則是
    的頭像 發(fā)表于 09-18 10:44 ?4852次閱讀