chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

PyTorch教程-4.2. 圖像分類(lèi)數(shù)據(jù)集

jf_pJlTbmA9 ? 來(lái)源:PyTorch ? 作者:PyTorch ? 2023-06-05 15:38 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

廣泛用于圖像分類(lèi)的數(shù)據(jù)集之一是手寫(xiě)數(shù)字的MNIST 數(shù)據(jù)集 (LeCun等人,1998 年) 。在 1990 年代發(fā)布時(shí),它對(duì)大多數(shù)機(jī)器學(xué)習(xí)算法提出了巨大挑戰(zhàn),其中包含 60,000 張圖像 28×28像素分辨率(加上 10,000 張圖像的測(cè)試數(shù)據(jù)集)??陀^地說(shuō),在 1995 年,配備高達(dá) 64MB RAM 和驚人的 5 MFLOPs 的 Sun SPARCStation 5 被認(rèn)為是 AT&T 貝爾實(shí)驗(yàn)室最先進(jìn)的機(jī)器學(xué)習(xí)設(shè)備。實(shí)現(xiàn)數(shù)字識(shí)別的高精度是一個(gè)1990 年代 USPS 自動(dòng)分揀信件的關(guān)鍵組件。深度網(wǎng)絡(luò),如 LeNet-5 (LeCun等人,1995 年)、具有不變性的支持向量機(jī) (Sch?lkopf等人,1996 年)和切線(xiàn)距離分類(lèi)器 (Simard等人,1998 年)都允許達(dá)到 1% 以下的錯(cuò)誤率。

十多年來(lái),MNIST 一直是比較機(jī)器學(xué)習(xí)算法的參考點(diǎn)。雖然它作為基準(zhǔn)數(shù)據(jù)集運(yùn)行良好,但即使是按照當(dāng)今標(biāo)準(zhǔn)的簡(jiǎn)單模型也能達(dá)到 95% 以上的分類(lèi)準(zhǔn)確率,這使得它不適合區(qū)分強(qiáng)模型和弱模型。更重要的是,數(shù)據(jù)集允許非常高的準(zhǔn)確性,這在許多分類(lèi)問(wèn)題中通常是看不到的。這種算法的發(fā)展偏向于可以利用干凈數(shù)據(jù)集的特定算法系列,例如活動(dòng)集方法和邊界搜索活動(dòng)集算法。今天,MNIST 更像是一種健全性檢查,而不是基準(zhǔn)。ImageNet ( Deng et al. , 2009 )提出了一個(gè)更相關(guān)的挑戰(zhàn)。不幸的是,對(duì)于本書(shū)中的許多示例和插圖來(lái)說(shuō),ImageNet 太大了,因?yàn)橛?xùn)練這些示例需要很長(zhǎng)時(shí)間才能使示例具有交互性。作為替代,我們將在接下來(lái)的部分中重點(diǎn)討論定性相似但規(guī)模小得多的 Fashion-MNIST 數(shù)據(jù)集(Xiao等人,2017 年),該數(shù)據(jù)集于 2017 年發(fā)布。它包含 10 類(lèi)服裝的圖像 28×28像素分辨率。

%matplotlib inline
import time
import torch
import torchvision
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()

%matplotlib inline
import time
from mxnet import gluon, npx
from mxnet.gluon.data.vision import transforms
from d2l import mxnet as d2l

npx.set_np()

d2l.use_svg_display()

%matplotlib inline
import time
import jax
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
from jax import numpy as jnp
from d2l import jax as d2l

d2l.use_svg_display()

No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)

%matplotlib inline
import time
import tensorflow as tf
from d2l import tensorflow as d2l

d2l.use_svg_display()

4.2.1. 加載數(shù)據(jù)集

由于它是一個(gè)經(jīng)常使用的數(shù)據(jù)集,所有主要框架都提供了它的預(yù)處理版本。我們可以使用內(nèi)置的框架實(shí)用程序?qū)?Fashion-MNIST 數(shù)據(jù)集下載并讀取到內(nèi)存中。

class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    trans = transforms.Compose([transforms.Resize(resize),
                  transforms.ToTensor()])
    self.train = torchvision.datasets.FashionMNIST(
      root=self.root, train=True, transform=trans, download=True)
    self.val = torchvision.datasets.FashionMNIST(
      root=self.root, train=False, transform=trans, download=True)

class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    trans = transforms.Compose([transforms.Resize(resize),
                  transforms.ToTensor()])
    self.train = gluon.data.vision.FashionMNIST(
      train=True).transform_first(trans)
    self.val = gluon.data.vision.FashionMNIST(
      train=False).transform_first(trans)

class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    self.train, self.val = tf.keras.datasets.fashion_mnist.load_data()

class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    self.train, self.val = tf.keras.datasets.fashion_mnist.load_data()

Fashion-MNIST 包含來(lái)自 10 個(gè)類(lèi)別的圖像,每個(gè)類(lèi)別在訓(xùn)練數(shù)據(jù)集中由 6,000 個(gè)圖像表示,在測(cè)試數(shù)據(jù)集中由 1,000 個(gè)圖像表示。測(cè)試 數(shù)據(jù)集用于評(píng)估模型性能(不得用于訓(xùn)練)。因此,訓(xùn)練集和測(cè)試集分別包含 60,000 和 10,000 張圖像。

data = FashionMNIST(resize=(32, 32))
len(data.train), len(data.val)

(60000, 10000)

data = FashionMNIST(resize=(32, 32))
len(data.train), len(data.val)

(60000, 10000)

data = FashionMNIST(resize=(32, 32))
len(data.train[0]), len(data.val[0])

(60000, 10000)

data = FashionMNIST(resize=(32, 32))
len(data.train[0]), len(data.val[0])

(60000, 10000)

圖像是灰度和放大到32×32分辨率以上的像素。這類(lèi)似于由(二進(jìn)制)黑白圖像組成的原始 MNIST 數(shù)據(jù)集。但請(qǐng)注意,大多數(shù)具有 3 個(gè)通道(紅色、綠色、藍(lán)色)的現(xiàn)代圖像數(shù)據(jù)和超過(guò) 100 個(gè)通道的高光譜圖像(HyMap 傳感器有 126 個(gè)通道)。按照慣例,我們將圖像存儲(chǔ)為 c×h×w張量,其中c是顏色通道數(shù),h是高度和w是寬度。

data.train[0][0].shape

torch.Size([1, 32, 32])

data.train[0][0].shape

(1, 32, 32)

data.train[0][0].shape

(28, 28)

data.train[0][0].shape

(28, 28)

Fashion-MNIST 的類(lèi)別具有人類(lèi)可理解的名稱(chēng)。以下便捷方法在數(shù)字標(biāo)簽及其名稱(chēng)之間進(jìn)行轉(zhuǎn)換。

@d2l.add_to_class(FashionMNIST) #@save
def text_labels(self, indices):
  """Return text labels."""
  labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
       'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
  return [labels[int(i)] for i in indices]

4.2.2. 讀取一個(gè)小批量

為了讓我們?cè)谧x取訓(xùn)練集和測(cè)試集時(shí)更輕松,我們使用內(nèi)置的數(shù)據(jù)迭代器而不是從頭開(kāi)始創(chuàng)建一個(gè)?;叵胍幌拢诿看蔚校瑪?shù)據(jù)迭代器讀取一個(gè)大小為 的小批量數(shù)據(jù)batch_size。我們還隨機(jī)打亂訓(xùn)練數(shù)據(jù)迭代器的示例。

@d2l.add_to_class(FashionMNIST) #@save
def get_dataloader(self, train):
  data = self.train if train else self.val
  return torch.utils.data.DataLoader(data, self.batch_size, shuffle=train,
                    num_workers=self.num_workers)

@d2l.add_to_class(FashionMNIST) #@save
def get_dataloader(self, train):
  data = self.train if train else self.val
  return gluon.data.DataLoader(data, self.batch_size, shuffle=train,
                 num_workers=self.num_workers)

@d2l.add_to_class(FashionMNIST) #@save
def get_dataloader(self, train):
  data = self.train if train else self.val
  process = lambda X, y: (tf.expand_dims(X, axis=3) / 255,
              tf.cast(y, dtype='int32'))
  resize_fn = lambda X, y: (tf.image.resize_with_pad(X, *self.resize), y)
  shuffle_buf = len(data[0]) if train else 1
  return tfds.as_numpy(
    tf.data.Dataset.from_tensor_slices(process(*data)).batch(
      self.batch_size).map(resize_fn).shuffle(shuffle_buf))

@d2l.add_to_class(FashionMNIST) #@save
def get_dataloader(self, train):
  data = self.train if train else self.val
  process = lambda X, y: (tf.expand_dims(X, axis=3) / 255,
              tf.cast(y, dtype='int32'))
  resize_fn = lambda X, y: (tf.image.resize_with_pad(X, *self.resize), y)
  shuffle_buf = len(data[0]) if train else 1
  return tf.data.Dataset.from_tensor_slices(process(*data)).batch(
    self.batch_size).map(resize_fn).shuffle(shuffle_buf)

為了了解這是如何工作的,讓我們通過(guò)調(diào)用該 train_dataloader方法來(lái)加載一小批圖像。它包含 64 張圖像。

X, y = next(iter(data.train_dataloader()))
print(X.shape, X.dtype, y.shape, y.dtype)

torch.Size([64, 1, 32, 32]) torch.float32 torch.Size([64]) torch.int64

X, y = next(iter(data.train_dataloader()))
print(X.shape, X.dtype, y.shape, y.dtype)

(64, 1, 32, 32) float32 (64,) int32

X, y = next(iter(data.train_dataloader()))
print(X.shape, X.dtype, y.shape, y.dtype)

WARNING:tensorflow:From /home/d2l-worker/miniconda3/envs/d2l-en-release-1/lib/python3.9/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.
Instructions for updating:
Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089
(64, 32, 32, 1) float32 (64,) int32

X, y = next(iter(data.train_dataloader()))
print(X.shape, X.dtype, y.shape, y.dtype)

WARNING:tensorflow:From /home/d2l-worker/miniconda3/envs/d2l-en-release-1/lib/python3.9/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.
Instructions for updating:
Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089
(64, 32, 32, 1)  (64,) 

讓我們看看讀取圖像所花費(fèi)的時(shí)間。盡管它是一個(gè)內(nèi)置的加載程序,但速度并不快。盡管如此,這已經(jīng)足夠了,因?yàn)槭褂蒙疃染W(wǎng)絡(luò)處理圖像需要更長(zhǎng)的時(shí)間。因此,訓(xùn)練網(wǎng)絡(luò)不受 IO 約束就足夠了。

tic = time.time()
for X, y in data.train_dataloader():
  continue
f'{time.time() - tic:.2f} sec'

'5.06 sec'

tic = time.time()
for X, y in data.train_dataloader():
  continue
f'{time.time() - tic:.2f} sec'

'4.12 sec'

tic = time.time()
for X, y in data.train_dataloader():
  continue
f'{time.time() - tic:.2f} sec'

'0.96 sec'

tic = time.time()
for X, y in data.train_dataloader():
  continue
f'{time.time() - tic:.2f} sec'

'0.95 sec'

4.2.3. 可視化

我們將經(jīng)常使用 Fashion-MNIST 數(shù)據(jù)集。一個(gè)便利的功能show_images可以用來(lái)可視化圖像和相關(guān)的標(biāo)簽。其實(shí)施細(xì)節(jié)推遲到附錄。

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
  """Plot a list of images."""
  raise NotImplementedError

讓我們好好利用它。通常,可視化和檢查您正在訓(xùn)練的數(shù)據(jù)是個(gè)好主意。人類(lèi)非常善于發(fā)現(xiàn)不尋常的方面,因此,可視化可以作為一種額外的保護(hù)措施,防止實(shí)驗(yàn)設(shè)計(jì)中的錯(cuò)誤和錯(cuò)誤。以下是訓(xùn)練數(shù)據(jù)集中前幾個(gè)示例的圖像及其相應(yīng)標(biāo)簽(文本)。

@d2l.add_to_class(FashionMNIST) #@save
def visualize(self, batch, nrows=1, ncols=8, labels=[]):
  X, y = batch
  if not labels:
    labels = self.text_labels(y)
  d2l.show_images(X.squeeze(1), nrows, ncols, titles=labels)
batch = next(iter(data.val_dataloader()))
data.visualize(batch)

pYYBAGR5VLOAE8DAAAFXlI5prpg972.svg

@d2l.add_to_class(FashionMNIST) #@save
def visualize(self, batch, nrows=1, ncols=8, labels=[]):
  X, y = batch
  if not labels:
    labels = self.text_labels(y)
  d2l.show_images(X.squeeze(1), nrows, ncols, titles=labels)
batch = next(iter(data.val_dataloader()))
data.visualize(batch)

poYBAGR5VLWABCDeAAFUVW5zHbQ247.svg

@d2l.add_to_class(FashionMNIST) #@save
def visualize(self, batch, nrows=1, ncols=8, labels=[]):
  X, y = batch
  if not labels:
    labels = self.text_labels(y)
  d2l.show_images(jnp.squeeze(X), nrows, ncols, titles=labels)

batch = next(iter(data.val_dataloader()))
data.visualize(batch)

pYYBAGR5VLiAMQdTAAFW9OrJp3Q736.svg

@d2l.add_to_class(FashionMNIST) #@save
def visualize(self, batch, nrows=1, ncols=8, labels=[]):
  X, y = batch
  if not labels:
    labels = self.text_labels(y)
  d2l.show_images(tf.squeeze(X), nrows, ncols, titles=labels)
batch = next(iter(data.val_dataloader()))
data.visualize(batch)

pYYBAGR5VLiAMQdTAAFW9OrJp3Q736.svg

我們現(xiàn)在準(zhǔn)備好在接下來(lái)的部分中使用 Fashion-MNIST 數(shù)據(jù)集。

4.2.4. 概括

我們現(xiàn)在有一個(gè)稍微更真實(shí)的數(shù)據(jù)集用于分類(lèi)。Fashion-MNIST 是一個(gè)服裝分類(lèi)數(shù)據(jù)集,由代表 10 個(gè)類(lèi)別的圖像組成。我們將在后續(xù)部分和章節(jié)中使用該數(shù)據(jù)集來(lái)評(píng)估各種網(wǎng)絡(luò)設(shè)計(jì),從簡(jiǎn)單的線(xiàn)性模型到高級(jí)殘差網(wǎng)絡(luò)。正如我們通常對(duì)圖像所做的那樣,我們將它們讀取為形狀的張量(批量大小、通道數(shù)、高度、寬度)。目前,我們只有一個(gè)通道,因?yàn)閳D像是灰度的(上面的可視化使用假調(diào)色板來(lái)提高可見(jiàn)性)。

最后,數(shù)據(jù)迭代器是實(shí)現(xiàn)高效性能的關(guān)鍵組件。例如,我們可能會(huì)使用 GPU 進(jìn)行高效的圖像解壓縮、視頻轉(zhuǎn)碼或其他預(yù)處理。只要有可能,您就應(yīng)該依靠利用高性能計(jì)算的良好實(shí)現(xiàn)的數(shù)據(jù)迭代器來(lái)避免減慢您的訓(xùn)練循環(huán)。

4.2.5. 練習(xí)

減少batch_size(例如,減少到 1)會(huì)影響閱讀性能嗎?

數(shù)據(jù)迭代器的性能很重要。您認(rèn)為當(dāng)前的實(shí)施是否足夠快?探索改進(jìn)它的各種選項(xiàng)。使用系統(tǒng)分析器找出瓶頸所在。

查看框架的在線(xiàn) API 文檔。還有哪些其他數(shù)據(jù)集可用?

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1235

    瀏覽量

    26115
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    813

    瀏覽量

    14781
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    【Sipeed MaixCAM Pro開(kāi)發(fā)板試用體驗(yàn)】基于MaixCAM-Pro的AI生成圖像鑒別系統(tǒng)

    圖像的快速鑒別,滿(mǎn)足實(shí)時(shí)或準(zhǔn)實(shí)時(shí)的應(yīng)用需求。 3. 數(shù)據(jù)采集 AI圖片數(shù)據(jù),本項(xiàng)目使用gemini生成圖片,使用的是gem來(lái)實(shí)現(xiàn)的。 提示詞如下 你是一個(gè)能夠生成美術(shù)繪本風(fēng)格插畫(huà)的智
    發(fā)表于 08-21 13:59

    AI Cube如何導(dǎo)入數(shù)據(jù)?

    我從在線(xiàn)平臺(tái)標(biāo)注完并且下載了數(shù)據(jù),也按照ai cube的要求修改了文件夾名稱(chēng),但是導(dǎo)入提示 不知道是什么原因,我該怎么辦? 以下是我修改后的文件夾目錄
    發(fā)表于 08-11 08:12

    云訓(xùn)練平臺(tái)數(shù)據(jù)過(guò)大無(wú)法下載數(shù)據(jù)至本地怎么解決?

    起因是現(xiàn)在平臺(tái)限制了圖片數(shù)量,想要本地訓(xùn)練下載數(shù)據(jù)時(shí)發(fā)現(xiàn)只會(huì)跳出網(wǎng)絡(luò)異常的錯(cuò)誤,請(qǐng)問(wèn)這有什么解決辦法?
    發(fā)表于 07-22 06:03

    任正非說(shuō) AI已經(jīng)確定是第四次工業(yè)革命 那么如何從容地加入進(jìn)來(lái)呢?

    處理,TensorFlow、PyTorch用于構(gòu)建和訓(xùn)練神經(jīng)網(wǎng)絡(luò)。以Python為例,通過(guò)編寫(xiě)簡(jiǎn)單的程序來(lái)處理數(shù)據(jù),如讀取數(shù)據(jù)、進(jìn)行數(shù)據(jù)
    發(fā)表于 07-08 17:44

    使用AICube導(dǎo)入數(shù)據(jù)點(diǎn)創(chuàng)建后提示數(shù)據(jù)不合法怎么處理?

    重現(xiàn)步驟 data目錄下 labels.txt只有英文 **錯(cuò)誤日志** 但是使用示例的數(shù)據(jù)可以完成訓(xùn)練并部署
    發(fā)表于 06-24 06:07

    數(shù)據(jù)下載失敗的原因?

    數(shù)據(jù)下載失敗什么原因太大了嗎,小的可以下載,想把大的下載去本地訓(xùn)練報(bào)錯(cuò)網(wǎng)絡(luò)錯(cuò)誤 大的數(shù)據(jù)多大?數(shù)據(jù)量有多少?
    發(fā)表于 06-18 07:04

    在友晶LabCloud平臺(tái)上使用PipeCNN實(shí)現(xiàn)ImageNet圖像分類(lèi)

    利用深度卷積神經(jīng)網(wǎng)絡(luò)(CNN)進(jìn)行圖像分類(lèi)是通過(guò)使用多個(gè)卷積層來(lái)從輸入數(shù)據(jù)中提取特征,最后通過(guò)分類(lèi)層做決策來(lái)識(shí)別出目標(biāo)物體。
    的頭像 發(fā)表于 04-23 09:42 ?997次閱讀
    在友晶LabCloud平臺(tái)上使用PipeCNN實(shí)現(xiàn)ImageNet<b class='flag-5'>圖像</b><b class='flag-5'>分類(lèi)</b>

    基于RV1126開(kāi)發(fā)板實(shí)現(xiàn)自學(xué)習(xí)圖像分類(lèi)方案

    在RV1126開(kāi)發(fā)板上實(shí)現(xiàn)自學(xué)習(xí):在識(shí)別前對(duì)物體圖片進(jìn)行模型學(xué)習(xí),訓(xùn)練完成后通過(guò)算法分類(lèi)得出圖像的模型ID。 方案設(shè)計(jì)邏輯流程圖,方案代碼分為分為兩個(gè)業(yè)務(wù)流程,主體代碼負(fù)責(zé)抓取、合成圖像,算法代碼負(fù)責(zé)訓(xùn)練和檢測(cè)功能
    的頭像 發(fā)表于 04-21 13:37 ?11次閱讀
    基于RV1126開(kāi)發(fā)板實(shí)現(xiàn)自學(xué)習(xí)<b class='flag-5'>圖像</b><b class='flag-5'>分類(lèi)</b>方案

    快速部署!米爾全志T527開(kāi)發(fā)板的OpenCV行人檢測(cè)方案指南

    、行人檢測(cè)概論使用HOG和SVM基于全志T527開(kāi)發(fā)板構(gòu)建行人檢測(cè)器的關(guān)鍵步驟包括: 準(zhǔn)備訓(xùn)練數(shù)據(jù):訓(xùn)練數(shù)據(jù)應(yīng)包含大量正樣本(行人圖像
    發(fā)表于 04-11 18:14

    請(qǐng)問(wèn)NanoEdge AI數(shù)據(jù)該如何構(gòu)建?

    我想用NanoEdge來(lái)識(shí)別異常的聲音,但我目前沒(méi)有辦法生成模型,我感覺(jué)可能是數(shù)據(jù)的問(wèn)題,請(qǐng)問(wèn)我該怎么構(gòu)建數(shù)據(jù)?或者生成模型失敗還會(huì)有哪些原因?
    發(fā)表于 03-10 08:20

    無(wú)法將自定義COCO數(shù)據(jù)導(dǎo)入到OpenVINO? DL Workbench怎么解決?

    以精確 FP32 將自定義模型轉(zhuǎn)換為中間表示 (IR) 格式。 使用未注注的數(shù)據(jù)和默認(rèn)配置將 IR (FP32) 轉(zhuǎn)換為 IR (INT8)。 使用 IR(INT8)推斷造成糟糕的結(jié)果。 創(chuàng)建
    發(fā)表于 03-05 06:02

    【米爾RK3576開(kāi)發(fā)板評(píng)測(cè)】+項(xiàng)目名稱(chēng)RetinaFace人臉檢測(cè)

    一、簡(jiǎn)介 Pytorch_Retinaface?是一個(gè)基于PyTorch框架實(shí)現(xiàn)的人臉檢測(cè)算法,它能夠快速而準(zhǔn)確地檢測(cè)出圖像中的人臉,并提供豐富的特征信息。該算法的核心思想是使用多尺度的錨點(diǎn)框
    發(fā)表于 02-15 13:28

    操作指南:pytorch云服務(wù)器怎么設(shè)置?

    設(shè)置PyTorch云服務(wù)器需選擇云平臺(tái),創(chuàng)建合適的GPU實(shí)例,安裝操作系統(tǒng)、Python及Anaconda,創(chuàng)建虛擬環(huán)境,根據(jù)CUDA版本安裝PyTorch,配置環(huán)境變量,最后驗(yàn)證安裝。過(guò)程中需考慮
    的頭像 發(fā)表于 02-08 10:33 ?699次閱讀