chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

PyTorch教程-4.2. 圖像分類數(shù)據(jù)集

jf_pJlTbmA9 ? 來源:PyTorch ? 作者:PyTorch ? 2023-06-05 15:38 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

廣泛用于圖像分類的數(shù)據(jù)集之一是手寫數(shù)字的MNIST 數(shù)據(jù)集 (LeCun等人,1998 年) 。在 1990 年代發(fā)布時,它對大多數(shù)機器學習算法提出了巨大挑戰(zhàn),其中包含 60,000 張圖像 28×28像素分辨率(加上 10,000 張圖像的測試數(shù)據(jù)集)??陀^地說,在 1995 年,配備高達 64MB RAM 和驚人的 5 MFLOPs 的 Sun SPARCStation 5 被認為是 AT&T 貝爾實驗室最先進的機器學習設備。實現(xiàn)數(shù)字識別的高精度是一個1990 年代 USPS 自動分揀信件的關鍵組件。深度網絡,如 LeNet-5 (LeCun等人,1995 年)、具有不變性的支持向量機 (Sch?lkopf等人,1996 年)和切線距離分類器 (Simard等人,1998 年)都允許達到 1% 以下的錯誤率。

十多年來,MNIST 一直是比較機器學習算法的參考點。雖然它作為基準數(shù)據(jù)集運行良好,但即使是按照當今標準的簡單模型也能達到 95% 以上的分類準確率,這使得它不適合區(qū)分強模型和弱模型。更重要的是,數(shù)據(jù)集允許非常高的準確性,這在許多分類問題中通常是看不到的。這種算法的發(fā)展偏向于可以利用干凈數(shù)據(jù)集的特定算法系列,例如活動集方法和邊界搜索活動集算法。今天,MNIST 更像是一種健全性檢查,而不是基準。ImageNet ( Deng et al. , 2009 )提出了一個更相關的挑戰(zhàn)。不幸的是,對于本書中的許多示例和插圖來說,ImageNet 太大了,因為訓練這些示例需要很長時間才能使示例具有交互性。作為替代,我們將在接下來的部分中重點討論定性相似但規(guī)模小得多的 Fashion-MNIST 數(shù)據(jù)集(Xiao等人,2017 年),該數(shù)據(jù)集于 2017 年發(fā)布。它包含 10 類服裝的圖像 28×28像素分辨率。

%matplotlib inline
import time
import torch
import torchvision
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()

%matplotlib inline
import time
from mxnet import gluon, npx
from mxnet.gluon.data.vision import transforms
from d2l import mxnet as d2l

npx.set_np()

d2l.use_svg_display()

%matplotlib inline
import time
import jax
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
from jax import numpy as jnp
from d2l import jax as d2l

d2l.use_svg_display()

No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)

%matplotlib inline
import time
import tensorflow as tf
from d2l import tensorflow as d2l

d2l.use_svg_display()

4.2.1. 加載數(shù)據(jù)集

由于它是一個經常使用的數(shù)據(jù)集,所有主要框架都提供了它的預處理版本。我們可以使用內置的框架實用程序將 Fashion-MNIST 數(shù)據(jù)集下載并讀取到內存中。

class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    trans = transforms.Compose([transforms.Resize(resize),
                  transforms.ToTensor()])
    self.train = torchvision.datasets.FashionMNIST(
      root=self.root, train=True, transform=trans, download=True)
    self.val = torchvision.datasets.FashionMNIST(
      root=self.root, train=False, transform=trans, download=True)

class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    trans = transforms.Compose([transforms.Resize(resize),
                  transforms.ToTensor()])
    self.train = gluon.data.vision.FashionMNIST(
      train=True).transform_first(trans)
    self.val = gluon.data.vision.FashionMNIST(
      train=False).transform_first(trans)

class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    self.train, self.val = tf.keras.datasets.fashion_mnist.load_data()

class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    self.train, self.val = tf.keras.datasets.fashion_mnist.load_data()

Fashion-MNIST 包含來自 10 個類別的圖像,每個類別在訓練數(shù)據(jù)集中由 6,000 個圖像表示,在測試數(shù)據(jù)集中由 1,000 個圖像表示。測試 數(shù)據(jù)集用于評估模型性能(不得用于訓練)。因此,訓練集和測試集分別包含 60,000 和 10,000 張圖像。

data = FashionMNIST(resize=(32, 32))
len(data.train), len(data.val)

(60000, 10000)

data = FashionMNIST(resize=(32, 32))
len(data.train), len(data.val)

(60000, 10000)

data = FashionMNIST(resize=(32, 32))
len(data.train[0]), len(data.val[0])

(60000, 10000)

data = FashionMNIST(resize=(32, 32))
len(data.train[0]), len(data.val[0])

(60000, 10000)

圖像是灰度和放大到32×32分辨率以上的像素。這類似于由(二進制)黑白圖像組成的原始 MNIST 數(shù)據(jù)集。但請注意,大多數(shù)具有 3 個通道(紅色、綠色、藍色)的現(xiàn)代圖像數(shù)據(jù)和超過 100 個通道的高光譜圖像(HyMap 傳感器有 126 個通道)。按照慣例,我們將圖像存儲為 c×h×w張量,其中c是顏色通道數(shù),h是高度和w是寬度。

data.train[0][0].shape

torch.Size([1, 32, 32])

data.train[0][0].shape

(1, 32, 32)

data.train[0][0].shape

(28, 28)

data.train[0][0].shape

(28, 28)

Fashion-MNIST 的類別具有人類可理解的名稱。以下便捷方法在數(shù)字標簽及其名稱之間進行轉換。

@d2l.add_to_class(FashionMNIST) #@save
def text_labels(self, indices):
  """Return text labels."""
  labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
       'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
  return [labels[int(i)] for i in indices]

4.2.2. 讀取一個小批量

為了讓我們在讀取訓練集和測試集時更輕松,我們使用內置的數(shù)據(jù)迭代器而不是從頭開始創(chuàng)建一個?;叵胍幌?,在每次迭代中,數(shù)據(jù)迭代器讀取一個大小為 的小批量數(shù)據(jù)batch_size。我們還隨機打亂訓練數(shù)據(jù)迭代器的示例。

@d2l.add_to_class(FashionMNIST) #@save
def get_dataloader(self, train):
  data = self.train if train else self.val
  return torch.utils.data.DataLoader(data, self.batch_size, shuffle=train,
                    num_workers=self.num_workers)

@d2l.add_to_class(FashionMNIST) #@save
def get_dataloader(self, train):
  data = self.train if train else self.val
  return gluon.data.DataLoader(data, self.batch_size, shuffle=train,
                 num_workers=self.num_workers)

@d2l.add_to_class(FashionMNIST) #@save
def get_dataloader(self, train):
  data = self.train if train else self.val
  process = lambda X, y: (tf.expand_dims(X, axis=3) / 255,
              tf.cast(y, dtype='int32'))
  resize_fn = lambda X, y: (tf.image.resize_with_pad(X, *self.resize), y)
  shuffle_buf = len(data[0]) if train else 1
  return tfds.as_numpy(
    tf.data.Dataset.from_tensor_slices(process(*data)).batch(
      self.batch_size).map(resize_fn).shuffle(shuffle_buf))

@d2l.add_to_class(FashionMNIST) #@save
def get_dataloader(self, train):
  data = self.train if train else self.val
  process = lambda X, y: (tf.expand_dims(X, axis=3) / 255,
              tf.cast(y, dtype='int32'))
  resize_fn = lambda X, y: (tf.image.resize_with_pad(X, *self.resize), y)
  shuffle_buf = len(data[0]) if train else 1
  return tf.data.Dataset.from_tensor_slices(process(*data)).batch(
    self.batch_size).map(resize_fn).shuffle(shuffle_buf)

為了了解這是如何工作的,讓我們通過調用該 train_dataloader方法來加載一小批圖像。它包含 64 張圖像。

X, y = next(iter(data.train_dataloader()))
print(X.shape, X.dtype, y.shape, y.dtype)

torch.Size([64, 1, 32, 32]) torch.float32 torch.Size([64]) torch.int64

X, y = next(iter(data.train_dataloader()))
print(X.shape, X.dtype, y.shape, y.dtype)

(64, 1, 32, 32) float32 (64,) int32

X, y = next(iter(data.train_dataloader()))
print(X.shape, X.dtype, y.shape, y.dtype)

WARNING:tensorflow:From /home/d2l-worker/miniconda3/envs/d2l-en-release-1/lib/python3.9/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.
Instructions for updating:
Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089
(64, 32, 32, 1) float32 (64,) int32

X, y = next(iter(data.train_dataloader()))
print(X.shape, X.dtype, y.shape, y.dtype)

WARNING:tensorflow:From /home/d2l-worker/miniconda3/envs/d2l-en-release-1/lib/python3.9/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.
Instructions for updating:
Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089
(64, 32, 32, 1)  (64,) 

讓我們看看讀取圖像所花費的時間。盡管它是一個內置的加載程序,但速度并不快。盡管如此,這已經足夠了,因為使用深度網絡處理圖像需要更長的時間。因此,訓練網絡不受 IO 約束就足夠了。

tic = time.time()
for X, y in data.train_dataloader():
  continue
f'{time.time() - tic:.2f} sec'

'5.06 sec'

tic = time.time()
for X, y in data.train_dataloader():
  continue
f'{time.time() - tic:.2f} sec'

'4.12 sec'

tic = time.time()
for X, y in data.train_dataloader():
  continue
f'{time.time() - tic:.2f} sec'

'0.96 sec'

tic = time.time()
for X, y in data.train_dataloader():
  continue
f'{time.time() - tic:.2f} sec'

'0.95 sec'

4.2.3. 可視化

我們將經常使用 Fashion-MNIST 數(shù)據(jù)集。一個便利的功能show_images可以用來可視化圖像和相關的標簽。其實施細節(jié)推遲到附錄。

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
  """Plot a list of images."""
  raise NotImplementedError

讓我們好好利用它。通常,可視化和檢查您正在訓練的數(shù)據(jù)是個好主意。人類非常善于發(fā)現(xiàn)不尋常的方面,因此,可視化可以作為一種額外的保護措施,防止實驗設計中的錯誤和錯誤。以下是訓練數(shù)據(jù)集中前幾個示例的圖像及其相應標簽(文本)。

@d2l.add_to_class(FashionMNIST) #@save
def visualize(self, batch, nrows=1, ncols=8, labels=[]):
  X, y = batch
  if not labels:
    labels = self.text_labels(y)
  d2l.show_images(X.squeeze(1), nrows, ncols, titles=labels)
batch = next(iter(data.val_dataloader()))
data.visualize(batch)

pYYBAGR5VLOAE8DAAAFXlI5prpg972.svg

@d2l.add_to_class(FashionMNIST) #@save
def visualize(self, batch, nrows=1, ncols=8, labels=[]):
  X, y = batch
  if not labels:
    labels = self.text_labels(y)
  d2l.show_images(X.squeeze(1), nrows, ncols, titles=labels)
batch = next(iter(data.val_dataloader()))
data.visualize(batch)

poYBAGR5VLWABCDeAAFUVW5zHbQ247.svg

@d2l.add_to_class(FashionMNIST) #@save
def visualize(self, batch, nrows=1, ncols=8, labels=[]):
  X, y = batch
  if not labels:
    labels = self.text_labels(y)
  d2l.show_images(jnp.squeeze(X), nrows, ncols, titles=labels)

batch = next(iter(data.val_dataloader()))
data.visualize(batch)

pYYBAGR5VLiAMQdTAAFW9OrJp3Q736.svg

@d2l.add_to_class(FashionMNIST) #@save
def visualize(self, batch, nrows=1, ncols=8, labels=[]):
  X, y = batch
  if not labels:
    labels = self.text_labels(y)
  d2l.show_images(tf.squeeze(X), nrows, ncols, titles=labels)
batch = next(iter(data.val_dataloader()))
data.visualize(batch)

pYYBAGR5VLiAMQdTAAFW9OrJp3Q736.svg

我們現(xiàn)在準備好在接下來的部分中使用 Fashion-MNIST 數(shù)據(jù)集。

4.2.4. 概括

我們現(xiàn)在有一個稍微更真實的數(shù)據(jù)集用于分類。Fashion-MNIST 是一個服裝分類數(shù)據(jù)集,由代表 10 個類別的圖像組成。我們將在后續(xù)部分和章節(jié)中使用該數(shù)據(jù)集來評估各種網絡設計,從簡單的線性模型到高級殘差網絡。正如我們通常對圖像所做的那樣,我們將它們讀取為形狀的張量(批量大小、通道數(shù)、高度、寬度)。目前,我們只有一個通道,因為圖像是灰度的(上面的可視化使用假調色板來提高可見性)。

最后,數(shù)據(jù)迭代器是實現(xiàn)高效性能的關鍵組件。例如,我們可能會使用 GPU 進行高效的圖像解壓縮、視頻轉碼或其他預處理。只要有可能,您就應該依靠利用高性能計算的良好實現(xiàn)的數(shù)據(jù)迭代器來避免減慢您的訓練循環(huán)。

4.2.5. 練習

減少batch_size(例如,減少到 1)會影響閱讀性能嗎?

數(shù)據(jù)迭代器的性能很重要。您認為當前的實施是否足夠快?探索改進它的各種選項。使用系統(tǒng)分析器找出瓶頸所在。

查看框架的在線 API 文檔。還有哪些其他數(shù)據(jù)集可用?

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 數(shù)據(jù)集

    關注

    4

    文章

    1224

    瀏覽量

    25444
  • pytorch
    +關注

    關注

    2

    文章

    809

    瀏覽量

    13949
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    數(shù)據(jù)下載失敗的原因?

    數(shù)據(jù)下載失敗什么原因太大了嗎,小的可以下載,想把大的下載去本地訓練報錯網絡錯誤 大的數(shù)據(jù)多大?數(shù)據(jù)量有多少?
    發(fā)表于 06-18 07:04

    在友晶LabCloud平臺上使用PipeCNN實現(xiàn)ImageNet圖像分類

    利用深度卷積神經網絡(CNN)進行圖像分類是通過使用多個卷積層來從輸入數(shù)據(jù)中提取特征,最后通過分類層做決策來識別出目標物體。
    的頭像 發(fā)表于 04-23 09:42 ?398次閱讀
    在友晶LabCloud平臺上使用PipeCNN實現(xiàn)ImageNet<b class='flag-5'>圖像</b><b class='flag-5'>分類</b>

    【米爾RK3576開發(fā)板評測】+項目名稱RetinaFace人臉檢測

    一、簡介 Pytorch_Retinaface?是一個基于PyTorch框架實現(xiàn)的人臉檢測算法,它能夠快速而準確地檢測出圖像中的人臉,并提供豐富的特征信息。該算法的核心思想是使用多尺度的錨點框
    發(fā)表于 02-15 13:28

    xgboost在圖像分類中的應用

    和易用性,在各種機器學習任務中得到了廣泛應用,包括分類、回歸和排序問題。在圖像分類領域,盡管深度學習模型(如卷積神經網絡CNN)占據(jù)主導地位,但XGBoost仍然有其獨特的應用價值,特別是在數(shù)
    的頭像 發(fā)表于 01-19 11:16 ?994次閱讀

    利用Arm Kleidi技術實現(xiàn)PyTorch優(yōu)化

    PyTorch 是一個廣泛應用的開源機器學習 (ML) 庫。近年來,Arm 與合作伙伴通力協(xié)作,持續(xù)改進 PyTorch 的推理性能。本文將詳細介紹如何利用 Arm Kleidi 技術提升 Arm
    的頭像 發(fā)表于 12-23 09:19 ?1056次閱讀
    利用Arm Kleidi技術實現(xiàn)<b class='flag-5'>PyTorch</b>優(yōu)化

    PyTorch 2.5.1: Bugs修復版發(fā)布

    ? 一,前言 在深度學習框架的不斷迭代中,PyTorch 社區(qū)始終致力于提供更穩(wěn)定、更高效的工具。最近,PyTorch 2.5.1 版本正式發(fā)布,這個版本主要針對 2.5.0 中發(fā)現(xiàn)的問題進行了修復
    的頭像 發(fā)表于 12-03 16:11 ?1613次閱讀
    <b class='flag-5'>PyTorch</b> 2.5.1: Bugs修復版發(fā)布

    使用卷積神經網絡進行圖像分類的步驟

    (例如,高分辨率、不同光照條件等)。 2. 數(shù)據(jù)收集 獲取數(shù)據(jù) :收集或購買一個包含你想要分類圖像
    的頭像 發(fā)表于 11-15 15:01 ?843次閱讀

    主動學習在圖像分類技術中的應用:當前狀態(tài)與未來展望

    基于Transformer結構提升模型預測性能,以確保模型預測結果的可靠性。 此外,本文還對各類主動學習圖像分類算法下的重要學術工作進行了實驗對比,并對各算法在不同規(guī)模數(shù)據(jù)上的
    的頭像 發(fā)表于 11-14 10:12 ?1267次閱讀
    主動學習在<b class='flag-5'>圖像</b><b class='flag-5'>分類</b>技術中的應用:當前狀態(tài)與未來展望

    PyTorch 數(shù)據(jù)加載與處理方法

    PyTorch 是一個流行的開源機器學習庫,它提供了強大的工具來構建和訓練深度學習模型。在構建模型之前,一個重要的步驟是加載和處理數(shù)據(jù)。 1. PyTorch 數(shù)據(jù)加載基礎 在
    的頭像 發(fā)表于 11-05 17:37 ?928次閱讀

    如何在 PyTorch 中訓練模型

    準備好數(shù)據(jù)PyTorch 提供了 torch.utils.data.Dataset 和 torch.utils.data.DataLoader 兩個類來幫助我們加載和批量處理數(shù)據(jù)。
    的頭像 發(fā)表于 11-05 17:36 ?925次閱讀

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學習訓練。
    的頭像 發(fā)表于 10-28 14:05 ?651次閱讀
    <b class='flag-5'>Pytorch</b>深度學習訓練的方法

    pytorch怎么在pycharm中運行

    第一部分:PyTorch和PyCharm的安裝 1.1 安裝PyTorch PyTorch是一個開源的機器學習庫,用于構建和訓練神經網絡。要在PyCharm中使用PyTorch,首先需
    的頭像 發(fā)表于 08-01 16:22 ?2517次閱讀

    pycharm如何調用pytorch

    引言 PyTorch是一個開源的機器學習庫,廣泛用于計算機視覺、自然語言處理等領域。PyCharm是一個流行的Python集成開發(fā)環(huán)境(IDE),提供了代碼編輯、調試、測試等功能。將PyTorch
    的頭像 發(fā)表于 08-01 15:41 ?1214次閱讀

    pytorch環(huán)境搭建詳細步驟

    PyTorch作為一個廣泛使用的深度學習框架,其環(huán)境搭建對于從事機器學習和深度學習研究及開發(fā)的人員來說至關重要。以下將介紹PyTorch環(huán)境搭建的詳細步驟,包括安裝Anaconda、配置清華鏡像源
    的頭像 發(fā)表于 08-01 15:38 ?1859次閱讀

    pytorch和python的關系是什么

    在當今的人工智能領域,Python已經成為了最受歡迎的編程語言之一。Python的易學易用、豐富的庫和框架以及強大的社區(qū)支持,使其成為了數(shù)據(jù)科學、機器學習和深度學習等領域的首選語言。而在深度學習領域
    的頭像 發(fā)表于 08-01 15:27 ?3268次閱讀