chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

谷歌使用機器學習模型來預測哪條路線最省油或最節(jié)能

IEEE電氣電子工程師 ? 來源:IEEE電氣電子工程師 ? 2023-07-25 16:37 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

該公司表示,司機們正在聽取谷歌地圖關于如何減少旅行中溫室氣體排放的建議。

2021年末,谷歌在谷歌地圖中推出了一項功能,用戶可以看到最省油的路線。谷歌在近日發(fā)布的最新環(huán)境報告中估計,該功能已幫助防止了約120萬公噸的地球升溫二氧化碳排放 —— 這幾乎相當于一年內減少25萬輛耗油汽車。

該工具在美國推出,但現(xiàn)在在加拿大、埃及和歐洲近40多個國家也有售。谷歌使用機器學習模型來預測哪條路線最省油或最節(jié)能,并向地圖用戶推薦。如果最省油的路線也是最快的,谷歌地圖將默認使用該選項。

用戶還可以告訴該應用程序汽車的發(fā)動機類型,無論是汽油、柴油、混合動力還是電動,以獲得更準確的預測??梢钥隙ǖ氖?,乘坐公共交通、騎自行車或步行仍然是更可持續(xù)的選擇,谷歌表示,它正在努力使地圖在駕駛之外更容易使用。

用戶還可以告訴該應用程序汽車的發(fā)動機類型,無論是汽油、柴油、混合動力還是電動,以獲得更準確的預測??梢钥隙ǖ氖?,乘坐公共交通、騎自行車或步行仍然是更可持續(xù)的選擇,谷歌表示,它正在努力使地圖在駕駛之外更容易使用。11月,谷歌在一些大城市推出了“實時查看(Live View)”AR功能,使地圖更具沉浸感。它當時還更新了帶有過濾器的地圖,以幫助電動汽車駕駛員找到快速充電器。

根據(jù)谷歌自己的分析,許多司機正在走汽車污染最小的道路。為了計算阻止排放的尾氣,該公司將地圖用戶在行駛路線上可能消耗的燃料量與如果沒有環(huán)保路線工具,他們走最快的路線會消耗的燃料進行了比較。從2021年10月谷歌推出該工具到2022年12月,節(jié)省了120萬公噸的二氧化碳排放量。

這都是谷歌到2022年通過其產品幫助10億用戶“做出更可持續(xù)的選擇”目標的一部分。在其新的環(huán)境報告中,谷歌還通過Nest分享了多年來的節(jié)能數(shù)字。據(jù)估計,2011年至2022年間,其智能恒溫器節(jié)省了1130多億千瓦時的能源和3600萬公噸的二氧化碳排放量。僅去年一年,Nest恒溫器就幫助用戶節(jié)省了比谷歌當年使用的更多的能源。

當然,谷歌產生的污染比任何家庭都要嚴重得多。2022年,其碳足跡總計排放了1018多萬公噸二氧化碳,大致相當于一年內25多個燃氣發(fā)電廠的污染。谷歌的排放量已從2018年的約1360萬公噸下降,但該公司要實現(xiàn)到2030年將排放量減半的目標還有很長的路要走。

責任編輯:彭菁

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電動汽車
    +關注

    關注

    156

    文章

    12427

    瀏覽量

    234635
  • 谷歌
    +關注

    關注

    27

    文章

    6231

    瀏覽量

    108183
  • 模型
    +關注

    關注

    1

    文章

    3521

    瀏覽量

    50445
  • 機器學習
    +關注

    關注

    66

    文章

    8503

    瀏覽量

    134650

原文標題:谷歌地圖將用來幫減少尾氣污染

文章出處:【微信號:IEEE_China,微信公眾號:IEEE電氣電子工程師】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    邊緣計算中的機器學習:基于 Linux 系統(tǒng)的實時推理模型部署與工業(yè)集成!

    你好,旅行者!歡迎來到Medium的這一角落。在本文中,我們將把一個機器學習模型(神經網(wǎng)絡)部署到邊緣設備上,利用從ModbusTCP寄存器獲取的實時數(shù)據(jù)
    的頭像 發(fā)表于 06-11 17:22 ?353次閱讀
    邊緣計算中的<b class='flag-5'>機器</b><b class='flag-5'>學習</b>:基于 Linux 系統(tǒng)的實時推理<b class='flag-5'>模型</b>部署與工業(yè)集成!

    機器學習模型市場前景如何

    當今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機器學習
    的頭像 發(fā)表于 02-13 09:39 ?365次閱讀

    【「基于大模型的RAG應用開發(fā)與優(yōu)化」閱讀體驗】+大模型微調技術解讀

    。通過微調,模型可以學習特定領域的專業(yè)知識和語言特征,從而在高度專業(yè)化的領域中展現(xiàn)出卓越的表現(xiàn)。微調過程主要有這幾項內容:數(shù)據(jù)清洗:消除噪聲、提高數(shù)據(jù)質量。包括處理缺失值(如用特殊符號代替缺失的單詞
    發(fā)表于 01-14 16:51

    【「具身智能機器人系統(tǒng)」閱讀體驗】2.具身智能機器人大模型

    近年來,人工智能領域的大模型技術在多個方向上取得了突破性的進展,特別是在機器人控制領域展現(xiàn)出了巨大的潛力。在“具身智能機器人大模型”部分,作者研究并探討了大
    發(fā)表于 12-29 23:04

    NPU與機器學習算法的關系

    緊密。 NPU的起源與特點 NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項目中提出,旨在為TensorFlow框架提供專用的硬件加速。NPU的設計目標是提高機器學習算法的運行效率,特別是在處理
    的頭像 發(fā)表于 11-15 09:19 ?1230次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習是AI大模型的基礎 技術支撐 :深度學習
    的頭像 發(fā)表于 10-23 15:25 ?2901次閱讀

    AI大模型與傳統(tǒng)機器學習的區(qū)別

    AI大模型與傳統(tǒng)機器學習在多個方面存在顯著的區(qū)別。以下是對這些區(qū)別的介紹: 一、模型規(guī)模與復雜度 AI大模型 :通常包含數(shù)十億甚至數(shù)萬億的參
    的頭像 發(fā)表于 10-23 15:01 ?2600次閱讀

    構建語音控制機器人 - 線性模型機器學習

    輪子并識別音頻信號,但它仍然無法通過語音命令控制按預定義路徑行駛。 線性控制模型 首先要解決的問題是實現(xiàn)直線驅動。為此,我們使用線性模型控制提供給車輪的電壓。使用線性
    的頭像 發(fā)表于 10-02 16:31 ?582次閱讀
    構建語音控制<b class='flag-5'>機器</b>人 - 線性<b class='flag-5'>模型</b>和<b class='flag-5'>機器</b><b class='flag-5'>學習</b>

    【《時間序列與機器學習》閱讀體驗】+ 時間序列的信息提取

    本人有些機器學習的基礎,理解起來一點也不輕松,加油。 作者首先說明了時間序列的信息提取是時間序列分析的一個重要環(huán)節(jié),目標是從給定的時間序列數(shù)據(jù)中提取出有用的信息和特征,以支持后續(xù)的分析和預測任務,可以
    發(fā)表于 08-14 18:00

    【「時間序列與機器學習」閱讀體驗】+ 簡單建議

    細微差異導致的錯誤,這無疑增加了調試的難度。因此,我個人建議,書中若能在關鍵代碼段旁邊添加二維碼,鏈接到可在線運行驗證的代碼環(huán)境,將極大地提升讀者的學習效率和體驗。這樣一,讀者不僅可以快速驗證代碼的正確性,還能在互動中加深對
    發(fā)表于 08-12 11:21

    【《時間序列與機器學習》閱讀體驗】+ 了解時間序列

    。 可以探索現(xiàn)象發(fā)展變化的規(guī)律,對某些社會經濟現(xiàn)象進行預測。 利用時間序列可以在不同地區(qū)國家之間進行對比分析,這也是統(tǒng)計分析的重要方法之一。 而《時間序列與機器學習》一書的后幾章分別
    發(fā)表于 08-11 17:55

    【「時間序列與機器學習」閱讀體驗】全書概覽與時間序列概述

    的應用也很廣泛,用機器學習為時間分析帶來新的可能性。人們往往可以通過過往的時間序列數(shù)據(jù)預測未來,在各行各業(yè)中都有很好的應用與發(fā)展前景。 時間序列分類: 1.單維時間序列 單維時間序列
    發(fā)表于 08-07 23:03

    【《大語言模型應用指南》閱讀體驗】+ 基礎知識學習

    今天學習大語言模型在自然語言理解方面的原理以及問答回復實現(xiàn)。 主要是基于深度學習和自然語言處理技術。 大語言模型涉及以下幾個過程: 數(shù)據(jù)收
    發(fā)表于 08-02 11:03

    【《大語言模型應用指南》閱讀體驗】+ 基礎篇

    今天開始學習《大語言模型應用指南》第一篇——基礎篇,對于人工智能相關專業(yè)技術人員應該可以輕松加愉快的完成此篇閱讀,但對于我還是有許多的知識點、專業(yè)術語比較陌生,需要網(wǎng)上搜索學習更多的資料才能理解書中
    發(fā)表于 07-25 14:33

    谷歌發(fā)布革命性AI天氣預測模型NeuralGCM

    在科技與自然科學的交匯點上,谷歌公司于7月23日宣布了一項重大突破——全新的人工智能天氣預測模型NeuralGCM。這一創(chuàng)新成果不僅融合了機器學習
    的頭像 發(fā)表于 07-23 14:24 ?820次閱讀