chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

2023年發(fā)布的25個開源大型語言模型總結

Dbwd_Imgtec ? 來源:未知 ? 2023-07-28 12:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

來源:DeepHub IMBA


大型語言模型(llm)是一種人工智能(AI),在大量文本和代碼數(shù)據(jù)集上進行訓練。它們可以用于各種任務,包括生成文本、翻譯語言和編寫不同類型的創(chuàng)意內(nèi)容。

今年開始,人們對開源LLM越來越感興趣。這些模型是在開源許可下發(fā)布的,這意味著任何人都可以使用、修改和分發(fā)它們。這使得研究人員、開發(fā)人員和企業(yè)都可以嘗試LLM,并為它們開發(fā)新的應用程序。使用開源llm有很多好處。首先它們通常比專業(yè)的LLM更價便宜。并且它們更加透明,這意味著研究人員可以研究它們是如何工作的以及它們是如何做出決定的。最主要的是它們更加靈活,可以針對不同的任務進行定制。wKgZomToNseAVRkNAAE3DVUyw_A778.jpg本文總結了當前可用的開源llm的全部(幾乎全部)列表,以及有關其許可選項和源代碼存儲庫的信息,希望對你有所幫助。▎SAIL 7B
基于LLaMa的搜索增強
參數(shù):7B
許可類型:GPL-3.0
發(fā)布日期:2023年5月
論文:SAIL — Search Augmented Instruction Learning

▎Guanaco
采用高效微調(diào)方法QLoRA發(fā)布的LLM模型
參數(shù):65B
許可類型:MIT
發(fā)布日期:2023年5月
論文:QLoRA — Efficient Finetuning of Quantized LLMs

▎RMKV
與transformer的LLM性能相當?shù)腞NN模型
參數(shù):100M–14B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:Scaling RNN to 1.5B and Reach Transformer LM Performance

▎MPT-7B
MosaicML的基礎系列模型
參數(shù):7B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:MPT-7B — A New Standard for Open-Source, Commercially Usable LLMs

▎OpenLLaMa
在RedPajama數(shù)據(jù)集上訓練的Meta AI的LLaMA 7B的另一個開源復制。
參數(shù):3,7B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:Meet OpenLLaMA — An Open-Source Reproduction of Meta AI’s LLaMA Large Language Model

▎RedPajama-INCITE
基于RedPajama數(shù)據(jù)集上訓練的指令調(diào)整和聊天Pythia模型。
參數(shù):3B, 7B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:RedPajama-INCITE family of models including base, instruction-tuned & chat models

▎h2oGPT
H2O的微調(diào)框架和文檔問答功能的聊天機器人UI
參數(shù):12B,30B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:Building the World’s Best Open-Source Large Language Model:H2O.ai’s Journey

▎FastChat-T5
通過微調(diào)Flan-t5-xl對從ShareGPT收集的用戶共享對話進行訓練的聊天機器人
參數(shù):3B
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:FastChat-T5 — our compact and commercial-friendly chatbot!

▎GPT4All
用于訓練和部署強大的定制llm的完整工具系統(tǒng)
參數(shù):7–13B
許可類型:MIT
發(fā)布日期:2023年4月
論文:GPT4All:An ecosystem of open-source on-edge large language models.

▎MiniGPT-4
基于BLIP-2和Vicuna LLM的Visual LLM模型
參數(shù):13B
許可類型:BSD-3-Clause
發(fā)布日期:2023年4月
論文:MiniGPT-4 — Enhancing Vision-Language Understanding withAdvanced Large Language Models

▎StableLM
StableLM的LLM模型系列
參數(shù):7B
許可類型:CC BY-NC-SA-4.0
發(fā)布日期:2023年4月
論文:Stability AI Launches the First of its StableLM Suite of Language Models

▎BloomZ
通過多任務微調(diào)實現(xiàn)跨語言泛化
參數(shù):176B
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:Cross-lingual Generalization through Multitask Finetuning

▎Dolly
Pythia 12B LLM在Databricks ML平臺上訓練的模型
參數(shù):12B
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:Free Dolly — Introducing the World’s First Truly Open Instruction-Tuned LLM

▎Baize Chatbot
基于LLaMa的開源聊天模型
參數(shù):30B
許可類型:GPL-3.0 license
發(fā)布日期:2023年4月
論文:Baize — An Open-Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data

▎ColossalChat
由ColossalAI開源發(fā)布的一個完整的RLHF流程訓練的模型
參數(shù):N/A
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:ColossalChat — An Open-Source Solution for Cloning ChatGPT With a Complete RLHF Pipeline

▎Lit LLaMa
來自Lightning AI的LLaMA的開源實現(xiàn)
參數(shù):13B
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:Why We’re Building Lit-LLaMA

▎Cerebras-GPT
開放的,計算效率高的,大型語言模型
參數(shù):111M-13B
許可類型:Apache 2.0
發(fā)布日期:2023年3月
論文:Cerebras-GPT — Open Compute-Optimal Language ModelsTrained on the Cerebras Wafer-Scale Cluster

▎Open Flamingo
Deepmind的Flamingo模型的開源實現(xiàn)
參數(shù):9B
許可類型:MIT License
發(fā)布日期:2023年3月
論文:Openflamingo — An Open-source Framework For Training Vision-language Models With In-context Learning

▎Chat GLM
使用開放式雙語(中英文)雙向密集預訓練模型
參數(shù):6B-130B
許可類型:Apache 2.0
發(fā)布日期:2023年3月
論文:GLM-130B:An Open Bilingual Pre-trained Model

▎DLite
通過微調(diào)Alpaca數(shù)據(jù)集上最小的GPT-2模型
參數(shù):124M
許可類型:Apache 2.0
發(fā)布日期:2023年3月
論文:Introducing DLite, a Lightweight ChatGPT-Like Model Based on Dolly

▎Alpaca 7B
描述:斯坦福大學發(fā)布的指令遵循LLaMA模型
參數(shù):7B
許可類型:Apache 2.0
發(fā)布日期:2023年3月
論文:Alpaca — A Strong, Replicable Instruction-Following Model

▎Flan UL2
在預訓練的UL2檢查點上訓練Flan 20B模型。
參數(shù):20B
許可類型:MIT License
發(fā)布日期:2023年3月
論文:A New Open Source Flan 20B with UL2

▎Flan-T5
T5在各種數(shù)據(jù)集上的指令微調(diào),提高預訓練語言模型的可用性
參數(shù):60M–11B
許可類型:Apache 2.0
發(fā)布日期:2023年2月
論文:Scaling Instruction-Finetuned Language Models


總結最后再補充2個剛剛發(fā)布的模型,一個是llama-2,這個我們文章也在前幾天介紹了微調(diào)和使用的方法。另外一個就是昨天剛看到的新聞,stabilityai發(fā)布的 FreeWilly2,它是在 Llama2 70B 上微調(diào)的結果,目前在open_llm_leaderboard上排第一。開源大型語言模型正在迅速發(fā)展,開源社區(qū)發(fā)布了許多模型。這些模型為開發(fā)人員、研究人員和愛好者提供了一個非常大機會,可以在沒有專有系統(tǒng)的情況下試驗尖端的語言技術。隨著越來越多的組織和個人為這些模型的發(fā)展做出貢獻,我們可以期待看到更強大、更容易使用和更創(chuàng)新的語言模型,它們將塑造自然語言處理的未來。作者:Manikanth

END

歡迎加入Imagination GPU與人工智能交流2群

wKgZomToNseABI9MAABN8aBfIqc329.jpg

入群請加小編微信:eetrend89

(添加請備注公司名和職稱)

推薦閱讀 對話Imagination中國區(qū)董事長:以GPU為支點加強軟硬件協(xié)同,助力數(shù)字化轉(zhuǎn)型 下載白皮書 | 通過Photon架構創(chuàng)建身臨其境的圖形體驗

Imagination Technologies是一家總部位于英國的公司,致力于研發(fā)芯片和軟件知識產(chǎn)權(IP),基于Imagination IP的產(chǎn)品已在全球數(shù)十億人的電話、汽車、家庭和工作 場所中使用。獲取更多物聯(lián)網(wǎng)、智能穿戴、通信、汽車電子、圖形圖像開發(fā)等前沿技術信息,歡迎關注 Imagination Tech!


原文標題:2023年發(fā)布的25個開源大型語言模型總結

文章出處:【微信公眾號:Imagination Tech】歡迎添加關注!文章轉(zhuǎn)載請注明出處。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • imagination
    +關注

    關注

    1

    文章

    611

    瀏覽量

    62951

原文標題:2023年發(fā)布的25個開源大型語言模型總結

文章出處:【微信號:Imgtec,微信公眾號:Imagination Tech】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    OpenAI發(fā)布2款開源模型

    OpenAI開源了兩款高性能權重語言模型gpt-oss-120b和gpt-oss-20b,OpenAI CEO Sam Altman表示:「gpt-oss 發(fā)布了!我們做了一
    的頭像 發(fā)表于 08-06 14:25 ?794次閱讀

    面壁小鋼炮模型MiniCPM4.0發(fā)布,端側智能更進一步

    ? 電子發(fā)燒友網(wǎng)報道(文/李彎彎)20256月6日,面壁智能CEO李大海在北京智源大會上發(fā)布有史以來最具想象力的面壁小鋼炮模型MiniCPM4.0,代號“前進四”,開源
    的頭像 發(fā)表于 06-08 08:18 ?6569次閱讀
    面壁小鋼炮<b class='flag-5'>模型</b>MiniCPM4.0<b class='flag-5'>發(fā)布</b>,端側智能更進一步

    無法在OVMS上運行來自Meta的大型語言模型 (LLM),為什么?

    無法在 OVMS 上運行來自 Meta 的大型語言模型 (LLM),例如 LLaMa2。 從 OVMS GitHub* 存儲庫運行 llama_chat Python* Demo 時遇到錯誤。
    發(fā)表于 03-05 08:07

    小白學大模型:訓練大語言模型的深度指南

    在當今人工智能飛速發(fā)展的時代,大型語言模型(LLMs)正以其強大的語言理解和生成能力,改變著我們的生活和工作方式。在最近的一項研究中,科學家們?yōu)榱松钊肓私馊绾胃咝У赜柧?/div>
    的頭像 發(fā)表于 03-03 11:51 ?1070次閱讀
    小白學大<b class='flag-5'>模型</b>:訓練大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>的深度指南

    語言模型的解碼策略與關鍵優(yōu)化總結

    本文系統(tǒng)性地闡述了大型語言模型(LargeLanguageModels,LLMs)中的解碼策略技術原理及其實踐應用。通過深入分析各類解碼算法的工作機制、性能特征和優(yōu)化方法,為研究者和工程師提供了全面
    的頭像 發(fā)表于 02-18 12:00 ?915次閱讀
    大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>的解碼策略與關鍵優(yōu)化<b class='flag-5'>總結</b>

    2024AI開發(fā)者中間件工具生態(tài)全面總結

    最近,開源中國 OSCHINA、Gitee 與 Gitee AI?聯(lián)合發(fā)布了《2024 中國開源開發(fā)者報告》。 報告聚焦 AI 大模型領域,對過去一
    的頭像 發(fā)表于 02-14 09:45 ?936次閱讀

    Meta重磅發(fā)布Llama 3.3 70B:開源AI模型的新里程碑

    新的高度。 一,技術突破:開源智能的新高度 Llama 3.3 70B 模型發(fā)布,標志著開源AI模型在智能水平上的一大飛躍。它不僅達到了之
    的頭像 發(fā)表于 12-18 16:46 ?795次閱讀
    Meta重磅<b class='flag-5'>發(fā)布</b>Llama 3.3 70B:<b class='flag-5'>開源</b>AI<b class='flag-5'>模型</b>的新里程碑

    語言模型開發(fā)框架是什么

    語言模型開發(fā)框架是指用于訓練、推理和部署大型語言模型的軟件工具和庫。下面,AI部落小編為您介紹大語言
    的頭像 發(fā)表于 12-06 10:28 ?724次閱讀

    NVIDIA GeForce 256發(fā)布25

    適逢 NVIDIA GeForce 256 發(fā)布 25 周年之際,我們共同慶祝它在游戲領域的突破,這一突破改變了娛樂方式,并為 AI 驅(qū)動的未來奠定了基礎。
    的頭像 發(fā)表于 11-19 16:05 ?956次閱讀

    從零開始訓練一語言模型需要投資多少錢?

    一,前言 ? 在AI領域,訓練一個大型語言模型(LLM)是一耗時且復雜的過程。幾乎每個做大型語言
    的頭像 發(fā)表于 11-08 14:15 ?1171次閱讀
    從零開始訓練一<b class='flag-5'>個</b>大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>需要投資多少錢?

    騰訊發(fā)布開源MoE大語言模型Hunyuan-Large

    近日,騰訊公司宣布成功推出業(yè)界領先的開源MoE(Mixture of Experts,專家混合)大語言模型——Hunyuan-Large。這款模型不僅在參數(shù)量上刷新了業(yè)界紀錄,更在效果
    的頭像 發(fā)表于 11-06 10:57 ?902次閱讀

    語言模型如何開發(fā)

    語言模型的開發(fā)是一復雜且細致的過程,涵蓋了數(shù)據(jù)準備、模型架構設計、訓練、微調(diào)和部署等多個階段。以下是對大語言
    的頭像 發(fā)表于 11-04 10:14 ?825次閱讀

    谷歌計劃12月發(fā)布Gemini 2.0模型

    近日,有消息稱谷歌計劃在12月發(fā)布其下一代人工智能模型——Gemini 2.0。這一消息引發(fā)了業(yè)界的廣泛關注,因為谷歌在人工智能領域一直保持著領先地位,而Gemini系列模型更是其重要的產(chǎn)品之一。
    的頭像 發(fā)表于 10-29 11:02 ?1329次閱讀

    搭建開源語言模型服務的方法

    本文我們將總結5種搭建開源語言模型服務的方法,每種都附帶詳細的操作步驟,以及各自的優(yōu)缺點。
    的頭像 發(fā)表于 10-29 09:17 ?1049次閱讀

    科大訊飛發(fā)布訊飛星火4.0 Turbo大模型及星火多語言模型

    近日,科大訊飛正式推出了其最新研發(fā)成果——訊飛星火4.0 Turbo大模型。這一發(fā)布不僅標志著科大訊飛在人工智能領域的又一次重大突破,也預示著其在自然語言處理技術上邁向了全新的高度。 在發(fā)布
    的頭像 發(fā)表于 10-24 13:58 ?1126次閱讀