chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)python代碼

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:41 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)python代碼 ;

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種可以在圖像處理和語音識別等領(lǐng)域中很好地應(yīng)用的神經(jīng)網(wǎng)絡(luò)。它的原理是通過不斷的卷積操作,將不同層次的特征進(jìn)行提取,從而通過反向傳播算法不斷優(yōu)化網(wǎng)絡(luò)權(quán)重,最終實(shí)現(xiàn)分類和預(yù)測等任務(wù)。

在本文中,我們將介紹如何使用Python實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò),并詳細(xì)說明每一個(gè)步驟及其原理。

第一步:導(dǎo)入必要的庫

在開始編寫代碼前,我們需要先導(dǎo)入一些必要的Python庫。具體如下所示:

```python
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
from keras.preprocessing.image import ImageDataGenerator
```

其中,numpy庫主要用于在Python中實(shí)現(xiàn)矩陣運(yùn)算;matplotlib庫則用于數(shù)據(jù)可視化,常被用于圖像的顯示;tensorflow庫和keras庫則是深度學(xué)習(xí)領(lǐng)域中非常常用的庫,尤其是keras庫,是一種高度封裝的深度學(xué)習(xí)框架,使得我們可以很方便地構(gòu)建深度神經(jīng)網(wǎng)絡(luò)。

第二步:加載數(shù)據(jù)

在本文中,我們將使用keras中自帶的cifar10數(shù)據(jù)集作為我們的實(shí)驗(yàn)數(shù)據(jù)。這個(gè)數(shù)據(jù)集中包含了60000張32*32像素的彩色圖片,涵蓋了10個(gè)不同的分類,如汽車、飛機(jī)等。我們可以通過下面的代碼來加載數(shù)據(jù):

```python
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
```

其中,x_train和y_train分別表示訓(xùn)練集的圖像和標(biāo)簽,x_test和y_test則表示測試集的圖像和標(biāo)簽。

第三步:預(yù)處理數(shù)據(jù)

當(dāng)我們成功地加載了數(shù)據(jù)后,下一步就是對數(shù)據(jù)進(jìn)行預(yù)處理。由于keras中的模型需要接受統(tǒng)一維度和歸一化的輸入數(shù)據(jù),因此我們需要對數(shù)據(jù)進(jìn)行特殊處理。具體如下所示:

```python
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
```

其中,我們首先將數(shù)據(jù)類型轉(zhuǎn)換為float32類型,然后將像素值進(jìn)行了歸一化處理,這樣可以使得數(shù)據(jù)的取值范圍在0到1之間,避免了過大或過小的像素值對模型造成不好的影響。

第四步:構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)模型

接下來,我們將使用keras來構(gòu)建一個(gè)卷積神經(jīng)網(wǎng)絡(luò)模型。具體如下所示:

```python
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=x_train.shape[1:]))
model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(10, activation='softmax'))
```

在這里,我們定義了一個(gè)Sequential()模型,它將我們的卷積神經(jīng)網(wǎng)絡(luò)堆疊起來。模型中包含了卷積層和池化層,它們分別用來提取圖像特征和縮小圖像大小。其中,Conv2D層就是卷積層,它利用卷積核在特定區(qū)域內(nèi)進(jìn)行卷積操作,從而提取不同級別的特征;MaxPooling2D層則是池化層,它使用最大池化方式來降低每個(gè)特征圖的大小,以減少計(jì)算量。在卷積層和池化層之后,我們還添加了兩個(gè)密集層,它們用于分類和輸出。

第五步:編譯模型

在構(gòu)建好卷積神經(jīng)網(wǎng)絡(luò)模型后,我們還需要對其進(jìn)行編譯。具體如下所示:

```python
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```

在這里,我們使用默認(rèn)的adam優(yōu)化器進(jìn)行模型優(yōu)化,損失函數(shù)則選用了分類問題中常用的交叉熵?fù)p失函數(shù)。同時(shí),我們還定義了關(guān)鍵指標(biāo)accuracy,這可以幫助我們對模型性能進(jìn)行評估。

第六步:訓(xùn)練模型

完成模型的編譯之后,我們就可以開始訓(xùn)練模型了。為了避免過擬合,我們需要通過在訓(xùn)練數(shù)據(jù)上進(jìn)行數(shù)據(jù)增強(qiáng)來增加數(shù)據(jù)量,這樣可以提高模型的泛化性能。同時(shí),我們還需要設(shè)置一些超參數(shù)來控制訓(xùn)練過程。具體如下所示:

```python
datagen = ImageDataGenerator(
rotation_range=0,
horizontal_flip=True,
vertical_flip=False,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.1
)

history = model.fit(
datagen.flow(x_train, y_train, batch_size=32),
steps_per_epoch=len(x_train) / 32,
epochs=50,
validation_data=(x_test, y_test),
verbose=1
)
```

在這里,我們通過調(diào)用ImageDataGenerator類來實(shí)現(xiàn)數(shù)據(jù)增強(qiáng)。其中,rotation_range定義了旋轉(zhuǎn)范圍,horizontal_flip則用于進(jìn)行水平翻轉(zhuǎn),vertical_flip用于垂直翻轉(zhuǎn),width_shift_range和height_shift_range則用于進(jìn)行隨機(jī)平移操作,zoom_range用于進(jìn)行隨機(jī)縮放。通過這些操作,我們可以有效地?cái)U(kuò)充訓(xùn)練數(shù)據(jù)集。

在訓(xùn)練過程中,我們需要設(shè)置一些超參數(shù),比如批次大小,訓(xùn)練輪數(shù)等。在這里,我們將每個(gè)批次的大小設(shè)置為32,訓(xùn)練輪數(shù)設(shè)置為50,steps_per_epoch參數(shù)則是用來控制每個(gè)訓(xùn)練輪中批次的個(gè)數(shù)。同時(shí),我們還需要通過validation_data參數(shù)來設(shè)置測試數(shù)據(jù)集,這樣可以方便我們對模型性能進(jìn)行評估。最后,我們指定verbose參數(shù)為1,這可以幫助我們在訓(xùn)練過程中監(jiān)控模型性能。

第七步:模型評估

在完成模型的訓(xùn)練之后,我們需要對其性能進(jìn)行評估。這可以通過使用keras提供的evaluate()函數(shù)來實(shí)現(xiàn)。具體如下所示:

```python
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```

在這里,我們可以輸出測試損失和測試精度等指標(biāo),這可以幫助我們快速了解模型的性能。

第八步:可視化訓(xùn)練結(jié)果

最后,我們還可以使用matplotlib庫來可視化我們的訓(xùn)練結(jié)果,這可以幫助我們更好地了解模型的性能趨勢。具體如下所示:

```python
fig, axs = plt.subplots(1, 2, figsize=(15, 5))

axs[0].plot(history.history['accuracy'])
axs[0].plot(history.history['val_accuracy'])
axs[0].set_title('Model accuracy')
axs[0].set_ylabel('Accuracy')
axs[0].set_xlabel('Epoch')
axs[0].legend(['Train', 'Test'], loc='upper left')

axs[1].plot(history.history['loss'])
axs[1].plot(history.history['val_loss'])
axs[1].set_title('Model loss')
axs[1].set_ylabel('Loss')
axs[1].set_xlabel('Epoch')
axs[1].legend(['Train', 'Test'], loc='upper left')

plt.show()
```

在這里,我們將訓(xùn)練的準(zhǔn)確率和損失值分別進(jìn)行了可視化,通過這些圖表,我們可以更好地了解模型在訓(xùn)練過程中的性能趨勢。

綜上所述,以上就是用Python實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)的完整流程,包括如何加載數(shù)據(jù)、預(yù)處理數(shù)據(jù)、構(gòu)建模型、編譯模型、訓(xùn)練模型、評估模型和可視化結(jié)果等。希望這篇文章能對讀者們學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)提供一定的幫助。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 圖像處理
    +關(guān)注

    關(guān)注

    29

    文章

    1340

    瀏覽量

    59349
  • python
    +關(guān)注

    關(guān)注

    57

    文章

    4866

    瀏覽量

    89799
  • 卷積神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    4

    文章

    372

    瀏覽量

    12795
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    神經(jīng)網(wǎng)絡(luò)的初步認(rèn)識

    日常生活中的智能應(yīng)用都離不開深度學(xué)習(xí),而深度學(xué)習(xí)則依賴于神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)。什么是神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)的核心思想是模仿生物神經(jīng)系統(tǒng)的結(jié)構(gòu),特別是大腦中神經(jīng)
    的頭像 發(fā)表于 12-17 15:05 ?192次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的初步認(rèn)識

    自動(dòng)駕駛中常提的卷積神經(jīng)網(wǎng)絡(luò)是個(gè)啥?

    在自動(dòng)駕駛領(lǐng)域,經(jīng)常會(huì)聽到卷積神經(jīng)網(wǎng)絡(luò)技術(shù)。卷積神經(jīng)網(wǎng)絡(luò),簡稱為CNN,是一種專門用來處理網(wǎng)格狀數(shù)據(jù)(比如圖像)的深度學(xué)習(xí)模型。CNN在圖像處理中尤其常見,因?yàn)閳D像本身就可以看作是由像
    的頭像 發(fā)表于 11-19 18:15 ?1989次閱讀
    自動(dòng)駕駛中常提的<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>是個(gè)啥?

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)原理及在MCU200T上仿真測試

    數(shù)的提出很大程度的解決了BP算法在優(yōu)化深層神經(jīng)網(wǎng)絡(luò)時(shí)的梯度耗散問題。當(dāng)x&gt;0 時(shí),梯度恒為1,無梯度耗散問題,收斂快;當(dāng)x&lt;0 時(shí),該層的輸出為0。 CNN
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    :   神經(jīng)網(wǎng)絡(luò)卷積函數(shù)   神經(jīng)網(wǎng)絡(luò)激活函數(shù)   全連接層函數(shù)   神經(jīng)網(wǎng)絡(luò)池化函數(shù)   Softmax 函數(shù)   神經(jīng)網(wǎng)絡(luò)支持功能
    發(fā)表于 10-29 06:08

    卷積運(yùn)算分析

    的數(shù)據(jù),故設(shè)計(jì)了ConvUnit模塊實(shí)現(xiàn)單個(gè)感受域規(guī)模的卷積運(yùn)算. 卷積運(yùn)算:不同于數(shù)學(xué)當(dāng)中提及到的卷積概念,CNN神經(jīng)網(wǎng)絡(luò)中的卷積嚴(yán)格意義
    發(fā)表于 10-28 07:31

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    模型。 我們使用MNIST數(shù)據(jù)集,訓(xùn)練一個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,用于手寫數(shù)字識別。一旦模型被訓(xùn)練并保存,就可以用于對新圖像進(jìn)行推理和預(yù)測。要使用生成的模型進(jìn)行推理,可以按照以下步驟進(jìn)行操作: 1.
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    在完成神經(jīng)網(wǎng)絡(luò)量化后,需要將神經(jīng)網(wǎng)絡(luò)部署到硬件加速器上。首先需要將所有權(quán)重?cái)?shù)據(jù)以及輸入數(shù)據(jù)導(dǎo)入到存儲(chǔ)器內(nèi)。 在仿真環(huán)境下,可將其存于一個(gè)文件,并在 Verilog 代碼中通過 readmemh 函數(shù)
    發(fā)表于 10-20 08:00

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計(jì)理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的神經(jīng)結(jié)構(gòu),盡管這種微生物的
    的頭像 發(fā)表于 09-28 10:03 ?925次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    基于FPGA搭建神經(jīng)網(wǎng)絡(luò)的步驟解析

    本文的目的是在一個(gè)神經(jīng)網(wǎng)絡(luò)已經(jīng)通過python或者M(jìn)ATLAB訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)模型,將訓(xùn)練好的模型的權(quán)重和偏置文件以TXT文件格式導(dǎo)出,然后通過python程序?qū)xt文件轉(zhuǎn)化為coe
    的頭像 發(fā)表于 06-03 15:51 ?1033次閱讀
    基于FPGA搭建<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的步驟解析

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?1542次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機(jī)器學(xué)習(xí)模型,具有顯著的優(yōu)點(diǎn),同時(shí)也存在一些不容忽視的缺點(diǎn)。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點(diǎn)的分析: 優(yōu)點(diǎn)
    的頭像 發(fā)表于 02-12 15:36 ?1876次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1465次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1604次閱讀

    深度學(xué)習(xí)入門:簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個(gè)簡單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個(gè)神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?958次閱讀