chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡基本結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡主要包括什么

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:57 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡基本結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡主要包括什么

卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛用于圖像識別、自然語言處理、語音識別等領(lǐng)域。它的基本結(jié)構(gòu)由卷積層、池化層和全連接層三部分組成,其中卷積層是核心部分,用于提取圖像的特征,池化層用于降低特征圖的大小,全連接層用于分類或回歸。

1.卷積層

卷積層是CNN最重要的組成部分,它通過一組可訓練的卷積核(filter)對輸入圖像進行卷積運算,得到一組特征圖(feature map)。每個卷積核在圖像上滑動,將覆蓋區(qū)域的像素值與卷積核的權(quán)重相乘并求和,最終得到一個標量。這個標量稱為卷積核在當前位置的響應值,也可以看作是特征圖上對應像素的值。

卷積運算可以有效地提取圖像的局部特征,因為相鄰像素之間具有空間相關(guān)性,局部信息與全局信息有所差異。同時,卷積操作可以共享權(quán)重,即多個卷積核可以共享相同的參數(shù),減少了模型的參數(shù)量,更容易優(yōu)化。

2.池化層

池化層用于降低特征圖的大小,減少計算量和內(nèi)存占用,同時也可以增加模型的魯棒性。通常采用最大池化(max pooling)和平均池化(average pooling)兩種方式,它們分別以局部區(qū)域中的最大值和平均值作為池化后的值,因此可以對特征進行不同程度的壓縮和抽象。

池化操作可以引入一些不變性,如平移不變性和輕微旋轉(zhuǎn)不變性,因為最大或平均值的位置和方向相對于局部區(qū)域的偏移一般不會影響最終的判斷結(jié)果。但是,池化可能損失一些局部細節(jié)信息,所以需要適量控制池化層的大小和步長。

3.全連接層

全連接層將特征提取和分類/回歸階段聯(lián)系起來,將多維特征展開成一維向量,并進行線性變換和激活操作,生成最終的輸出。它可以看作是一個傳統(tǒng)的人造神經(jīng)網(wǎng)絡,但是相對于其他層,全連接層的參數(shù)量較大,容易過擬合和計算量過大,所以在卷積神經(jīng)網(wǎng)絡中使用較少。

通常情況下,CNN的全連接層有一個或多個,每一層的輸出都與分類個數(shù)或回歸目標個數(shù)相等。常用的激活函數(shù)有ReLU、sigmoid和tanh,可以提高模型的非線性表達能力和計算穩(wěn)定性。

4.批歸一化層

批歸一化層可以提高神經(jīng)網(wǎng)絡的訓練速度和穩(wěn)定性,減少過擬合的風險。它在每一層的輸出之前都進行歸一化操作,保證輸入數(shù)據(jù)的分布穩(wěn)定,避免了梯度消失和爆炸的問題。此外,批歸一化還可以起到一定的正則化作用,防止模型過擬合。

批歸一化的具體實現(xiàn)方式是在每個小批量數(shù)據(jù)上求取均值和方差,并進行標準化。其公式可以表示為:

$$
\hat{x}^{(k)}=\frac{x^{(k)}-\textrm{E}[x^{(k)}]}{\sqrt{\textrm{Var}[x^{(k)}]+\epsilon}}
$$

其中$k$表示批量數(shù)據(jù)的編號,$\textrm{E}[x^{(k)}]$和$\textrm{Var}[x^{(k)}]$分別表示批量數(shù)據(jù)各維度上的均值和方差,$\epsilon$為一個極小常量,避免出現(xiàn)分母為零的情況。

批歸一化的優(yōu)點在于可以加速訓練過程,減少了梯度更新的變化,增加了模型的泛化能力??梢栽诰矸e層、全連接層、激活函數(shù)之間插入批歸一化層。

5.激活函數(shù)

激活函數(shù)是CNN中非常重要的組成部分,它用于引入非線性變換,使得模型具有更強的表達能力。常用的激活函數(shù)有ReLU、sigmoid和tanh等,其中ReLU是最常用和最有效的一種激活函數(shù),其公式為:

$$
\text{ReLU}(x)=\max(0,x)
$$

ReLU函數(shù)可以將負數(shù)部分映射為零,保留正數(shù)部分。它有助于加速模型的訓練、減少過擬合的風險和增加模型的稀疏性。

6.損失函數(shù)

損失函數(shù)是CNN中模型優(yōu)化的重要指標,它用于度量模型預測值和真實標簽之間的差異。在分類任務中,常用的損失函數(shù)有交叉熵損失函數(shù)、softmax損失函數(shù)、多類SVM損失函數(shù)等。在回歸任務中,常用的損失函數(shù)有平方誤差損失函數(shù)、絕對誤差損失函數(shù)、Huber損失函數(shù)等。

損失函數(shù)的選擇應該考慮任務類型、樣本量和模型復雜度等因素,同時需要注意防止過擬合和欠擬合的情況。

綜上所述,卷積神經(jīng)網(wǎng)絡是一種具有特有結(jié)構(gòu)的深度學習模型,它可以有效地提取圖像的局部特征,并進行分類或回歸等任務。通過不同的層次和功能的組合,卷積神經(jīng)網(wǎng)絡可以實現(xiàn)不同的模型結(jié)構(gòu)和應用場景。在實際應用中,我們需要根據(jù)數(shù)據(jù)集的特點和任務的要求,選擇合適的卷積神經(jīng)網(wǎng)絡模型,并對其進行參數(shù)調(diào)整和優(yōu)化,以達到更好的訓練效果。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    自動駕駛中常提的卷積神經(jīng)網(wǎng)絡是個啥?

    在自動駕駛領(lǐng)域,經(jīng)常會聽到卷積神經(jīng)網(wǎng)絡技術(shù)。卷積神經(jīng)網(wǎng)絡,簡稱為CNN,是一種專門用來處理網(wǎng)格狀數(shù)據(jù)(比如圖像)的深度學習模型。CNN在圖像處理中尤其常見,因為圖像本身就可以看作是由像
    的頭像 發(fā)表于 11-19 18:15 ?1810次閱讀
    自動駕駛中常提的<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡</b>是個啥?

    CNN卷積神經(jīng)網(wǎng)絡設(shè)計原理及在MCU200T上仿真測試

    CNN算法簡介 我們硬件加速器的模型為Lenet-5的變型,網(wǎng)絡粗略分共有7層,細分共有13層。包括卷積,最大池化層,激活層,扁平層,全連接層。下面是各層作用介紹: 卷積層:提取
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡庫使用介紹

    :   神經(jīng)網(wǎng)絡卷積函數(shù)   神經(jīng)網(wǎng)絡激活函數(shù)   全連接層函數(shù)   神經(jīng)網(wǎng)絡池化函數(shù)   Softmax 函數(shù)   神經(jīng)網(wǎng)絡支持功能
    發(fā)表于 10-29 06:08

    卷積運算分析

    的數(shù)據(jù),故設(shè)計了ConvUnit模塊實現(xiàn)單個感受域規(guī)模的卷積運算. 卷積運算:不同于數(shù)學當中提及到的卷積概念,CNN神經(jīng)網(wǎng)絡中的卷積嚴格意義
    發(fā)表于 10-28 07:31

    在Ubuntu20.04系統(tǒng)中訓練神經(jīng)網(wǎng)絡模型的一些經(jīng)驗

    , batch_size=512, epochs=20)總結(jié) 這個核心算法中的卷積神經(jīng)網(wǎng)絡結(jié)構(gòu)和訓練過程,是用來對MNIST手寫數(shù)字圖像進行分類的。模型將圖像作為輸入,通過卷積和池化層提取圖像的特征,然后通過全連接層進行分類預
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡部署相關(guān)操作

    讀取。接下來需要使用擴展指令,完成神經(jīng)網(wǎng)絡的部署,此處僅對第一層卷積+池化的部署進行說明,其余層與之類似。 1.使用 Custom_Dtrans 指令,將權(quán)重數(shù)據(jù)、輸入數(shù)據(jù)導入硬件加速器內(nèi)。對于權(quán)重
    發(fā)表于 10-20 08:00

    液態(tài)神經(jīng)網(wǎng)絡(LNN):時間連續(xù)性與動態(tài)適應性的神經(jīng)網(wǎng)絡

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡架構(gòu),其設(shè)計理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的神經(jīng)
    的頭像 發(fā)表于 09-28 10:03 ?647次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡</b>(LNN):時間連續(xù)性與動態(tài)適應性的<b class='flag-5'>神經(jīng)網(wǎng)絡</b>

    卷積神經(jīng)網(wǎng)絡如何監(jiān)測皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    自動駕駛感知系統(tǒng)中卷積神經(jīng)網(wǎng)絡原理的疑點分析

    背景 卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks, CNN)的核心技術(shù)主要包括以下幾個方面:局部連接、權(quán)值共享、多卷積
    的頭像 發(fā)表于 04-07 09:15 ?628次閱讀
    自動駕駛感知系統(tǒng)中<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡</b>原理的疑點分析

    BP神經(jīng)網(wǎng)絡網(wǎng)絡結(jié)構(gòu)設(shè)計原則

    BP(back propagation)神經(jīng)網(wǎng)絡是一種按照誤差逆向傳播算法訓練的多層前饋神經(jīng)網(wǎng)絡,其網(wǎng)絡結(jié)構(gòu)設(shè)計原則主要基于以下幾個方面: 一、層次
    的頭像 發(fā)表于 02-12 16:41 ?1233次閱讀

    BP神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡 : BP
    的頭像 發(fā)表于 02-12 15:53 ?1281次閱讀

    什么是BP神經(jīng)網(wǎng)絡的反向傳播算法

    BP神經(jīng)網(wǎng)絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經(jīng)網(wǎng)絡的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1257次閱讀

    BP神經(jīng)網(wǎng)絡與深度學習的關(guān)系

    BP神經(jīng)網(wǎng)絡與深度學習之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡的基本概念 BP神經(jīng)網(wǎng)絡,即反向傳播神經(jīng)網(wǎng)絡(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1323次閱讀

    BP神經(jīng)網(wǎng)絡在圖像識別中的應用

    傳播神經(jīng)網(wǎng)絡(Back Propagation Neural Network),是一種多層前饋神經(jīng)網(wǎng)絡,主要通過反向傳播算法進行學習。它通常包括輸入層、一個或多個隱藏層和輸出層。BP
    的頭像 發(fā)表于 02-12 15:12 ?1163次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡 ? 人工神經(jīng)網(wǎng)絡模型之所
    的頭像 發(fā)表于 01-09 10:24 ?2216次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構(gòu)方法