chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)算法原理

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:49 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)算法原理

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)(Deep Learning)的模型,它能夠自動地從圖片、音頻、文本等數(shù)據(jù)中提取特征,并且表現(xiàn)出非常出色的性能,在計(jì)算機(jī)視覺、自然語言處理等領(lǐng)域都有廣泛的應(yīng)用。在本文中,我們將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的算法原理。

一、卷積操作

卷積操作是卷積神經(jīng)網(wǎng)絡(luò)的核心操作之一,它模擬了神經(jīng)元在感受野局部區(qū)域的激活過程,能夠有效地提取輸入數(shù)據(jù)的局部特征。具體地,卷積操作可以描述如下:

設(shè)輸入數(shù)據(jù)為 $x \in \mathbb{R}^{H_1 \times W_1 \times C_1}$,卷積核為 $w \in \mathbb{R}^{K \times K \times C_1 \times C_2}$,偏差項(xiàng)為 $b \in \mathbb{R}^{C_2}$,則卷積操作可以用下面的公式表示:

$$y_{i,j,k} = b_k + \sum_{u=1}^{K}\sum_{v=1}^{K} \sum_{c=1}^{C_1} w_{u,v,c,k}x_{i+u-1,j+v-1,c}$$

其中,$y \in \mathbb{R}^{H_2 \times W_2 \times C_2}$ 是卷積操作的輸出,$H_2=W_2$ 是輸出數(shù)據(jù)的空間尺寸,$C_2$ 是輸出數(shù)據(jù)的通道數(shù)。卷積操作的作用可以看做是通過滑動卷積核,對每個(gè)局部輸入數(shù)據(jù)進(jìn)行加權(quán)求和,并加上偏差項(xiàng),從而得到一個(gè)輸出值。

卷積操作和全連接操作最大的不同在于權(quán)重共享。在全連接操作中,每個(gè)神經(jīng)元都有自己的權(quán)重,需要對全部的神經(jīng)元進(jìn)行訓(xùn)練。而在卷積操作中,卷積核的權(quán)重是共享的,所有的神經(jīng)元都使用同一個(gè)卷積核,并通過卷積核學(xué)習(xí)到一個(gè)通用的特征提取器,這樣可以減少參數(shù)的數(shù)量,降低過擬合的風(fēng)險(xiǎn)。

二、池化操作

池化操作(Pooling)是卷積神經(jīng)網(wǎng)絡(luò)中的另一個(gè)重要操作,它能夠把輸入數(shù)據(jù)的分辨率降低,同時(shí)保留局部特征。具體地,池化操作可以描述如下:

設(shè)輸入數(shù)據(jù)為 $x \in \mathbb{R}^{H_1 \times W_1 \times C}$,池化核的大小為 $M \times M$,步幅為 $S$,則池化操作可以用下面的公式表示:

$$y_{i,j,k} = \max_{u=1}^{M}\max_{v=1}^{M} x_{(i-1)S+u,(j-1)S+v,k}$$

其中,$y \in \mathbb{R}^{H_2 \times W_2 \times C}$ 是池化操作的輸出。池化操作主要有兩個(gè)作用:一是降低了輸入數(shù)據(jù)的空間分辨率,這樣能減少計(jì)算量,同時(shí)能夠有效地避免過擬合的問題;二是保留了輸入數(shù)據(jù)的局部特征,這樣能夠提升模型的表征能力。常見的池化操作包括最大池化和平均池化,其中最大池化被廣泛應(yīng)用于卷積神經(jīng)網(wǎng)絡(luò)中。

三、激活函數(shù)

激活函數(shù)是神經(jīng)網(wǎng)絡(luò)中的一個(gè)關(guān)鍵組件,它能夠增加網(wǎng)絡(luò)的非線性表征能力,在卷積神經(jīng)網(wǎng)絡(luò)中,通常使用的激活函數(shù)包括 Sigmoid 函數(shù)、ReLU 函數(shù)、LeakyReLU 函數(shù)等。其中 ReLU 函數(shù)是最常用的激活函數(shù),其數(shù)學(xué)表達(dá)式為:

$$\text{ReLU}(x) = \max(0,x)$$

它的導(dǎo)數(shù)為:

$$\text{ReLU}'(x) = \begin{cases} 1 & x > 0 \\ 0 & x \leq 0 \end{cases}$$

ReLU 函數(shù)的主要作用是在神經(jīng)網(wǎng)絡(luò)的非線性變換層中引入非線性,從而讓神經(jīng)網(wǎng)絡(luò)可以擬合更加復(fù)雜的函數(shù)。相較于 Sigmoid 函數(shù),ReLU 函數(shù)有以下優(yōu)點(diǎn):一是避免了 Sigmoid 函數(shù)的梯度消失問題,可以更好地訓(xùn)練深度神經(jīng)網(wǎng)絡(luò);二是計(jì)算速度更快。

四、卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)

卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)通常包括若干個(gè)卷積層、池化層和全連接層,其中卷積層和池化層對輸入數(shù)據(jù)進(jìn)行特征提取和降維處理,全連接層對輸入數(shù)據(jù)進(jìn)行分類或回歸。

在卷積神經(jīng)網(wǎng)絡(luò)中,不同卷積層和池化層的作用是不同的。例如,第一層卷積層通常會學(xué)習(xí)到一些基礎(chǔ)的濾波器,如邊緣檢測、紋理識別等;第二層卷積層會繼續(xù)學(xué)習(xí)更加高級的特征表示,如形狀、輪廓;第三層卷積層可以進(jìn)一步學(xué)習(xí)到更加復(fù)雜的特征表示,如面部特征、目標(biāo)識別等。而池化層則可以幫助卷積層更好地對輸入數(shù)據(jù)進(jìn)行降維處理,提高模型的泛化能力。最后的全連接層則可以通過對特征向量進(jìn)行分類或回歸來完成任務(wù)。

五、卷積神經(jīng)網(wǎng)絡(luò)的訓(xùn)練

卷積神經(jīng)網(wǎng)絡(luò)的訓(xùn)練可以通過基于梯度下降的反向傳播算法來實(shí)現(xiàn),具體過程可以描述如下:

1. 隨機(jī)初始化卷積核和偏差項(xiàng)的值;
2. 前向傳播,計(jì)算損失函數(shù);
3. 反向傳播,計(jì)算損失函數(shù)對網(wǎng)絡(luò)中的參數(shù)(包括卷積核和偏差項(xiàng))的梯度;
4. 使用梯度更新網(wǎng)絡(luò)中的參數(shù);
5. 重復(fù) 2~4 步,直到達(dá)到訓(xùn)練的輪數(shù)或者滿足訓(xùn)練停止條件為止。

在實(shí)際訓(xùn)練中,還需要進(jìn)行一些優(yōu)化來提高卷積神經(jīng)網(wǎng)絡(luò)的訓(xùn)練效率和性能,例如批量歸一化(Batch Normalization)、正則化(Regularization)、優(yōu)化算法(如 Adam、SGD、Adagrad 等)、學(xué)習(xí)率調(diào)整策略等。

六、總結(jié)

本文介紹了卷積神經(jīng)網(wǎng)絡(luò)的算法原理,包括卷積操作、池化操作、激活函數(shù)、網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練過程等方面。卷積神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)領(lǐng)域的一種重要模型,能夠有效地從圖像、音頻、文本等領(lǐng)域的輸入數(shù)據(jù)中提取特征,獲得出色的性能。通過理解卷積神經(jīng)網(wǎng)絡(luò)的算法原理,可以更好地應(yīng)用和優(yōu)化卷積神經(jīng)網(wǎng)絡(luò),提高模型性能,解決實(shí)際問題。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    自動駕駛中常提的卷積神經(jīng)網(wǎng)絡(luò)是個(gè)啥?

    在自動駕駛領(lǐng)域,經(jīng)常會聽到卷積神經(jīng)網(wǎng)絡(luò)技術(shù)。卷積神經(jīng)網(wǎng)絡(luò),簡稱為CNN,是一種專門用來處理網(wǎng)格狀數(shù)據(jù)(比如圖像)的深度學(xué)習(xí)模型。CNN在圖像處理中尤其常見,因?yàn)閳D像本身就可以看作是由像
    的頭像 發(fā)表于 11-19 18:15 ?1989次閱讀
    自動駕駛中常提的<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>是個(gè)啥?

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)原理及在MCU200T上仿真測試

    數(shù)的提出很大程度的解決了BP算法在優(yōu)化深層神經(jīng)網(wǎng)絡(luò)時(shí)的梯度耗散問題。當(dāng)x&gt;0 時(shí),梯度恒為1,無梯度耗散問題,收斂快;當(dāng)x&lt;0 時(shí),該層的輸出為0。 CNN
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    :   神經(jīng)網(wǎng)絡(luò)卷積函數(shù)   神經(jīng)網(wǎng)絡(luò)激活函數(shù)   全連接層函數(shù)   神經(jīng)網(wǎng)絡(luò)池化函數(shù)   Softmax 函數(shù)   神經(jīng)網(wǎng)絡(luò)支持功能
    發(fā)表于 10-29 06:08

    卷積運(yùn)算分析

    的數(shù)據(jù),故設(shè)計(jì)了ConvUnit模塊實(shí)現(xiàn)單個(gè)感受域規(guī)模的卷積運(yùn)算. 卷積運(yùn)算:不同于數(shù)學(xué)當(dāng)中提及到的卷積概念,CNN神經(jīng)網(wǎng)絡(luò)中的卷積嚴(yán)格意義
    發(fā)表于 10-28 07:31

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    , batch_size=512, epochs=20)總結(jié) 這個(gè)核心算法中的卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練過程,是用來對MNIST手寫數(shù)字圖像進(jìn)行分類的。模型將圖像作為輸入,通過卷積和池化
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    讀取。接下來需要使用擴(kuò)展指令,完成神經(jīng)網(wǎng)絡(luò)的部署,此處僅對第一層卷積+池化的部署進(jìn)行說明,其余層與之類似。 1.使用 Custom_Dtrans 指令,將權(quán)重?cái)?shù)據(jù)、輸入數(shù)據(jù)導(dǎo)入硬件加速器內(nèi)。對于權(quán)重
    發(fā)表于 10-20 08:00

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時(shí)間連續(xù)性與動態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計(jì)理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的
    的頭像 發(fā)表于 09-28 10:03 ?925次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時(shí)間連續(xù)性與動態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    無刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個(gè)以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實(shí)現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進(jìn)遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機(jī)故障診斷中的應(yīng)用

    的診斷誤差。仿真結(jié)果驗(yàn)證了該算法的有效性。 純分享帖,需要者可點(diǎn)擊附件免費(fèi)獲取完整資料~~~*附件:神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機(jī)故障診斷中的應(yīng)用.pdf【免責(zé)聲明】本文系網(wǎng)絡(luò)轉(zhuǎn)載,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版
    發(fā)表于 06-16 22:09

    BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則

    BP(back propagation)神經(jīng)網(wǎng)絡(luò)是一種按照誤差逆向傳播算法訓(xùn)練的多層前饋神經(jīng)網(wǎng)絡(luò),其網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則主要基于以下幾個(gè)方面: 一、層次結(jié)構(gòu) 輸入層 :接收外部輸入信號,不
    的頭像 發(fā)表于 02-12 16:41 ?1412次閱讀

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?1542次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播
    的頭像 發(fā)表于 02-12 15:18 ?1465次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?1604次閱讀

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用

    傳播神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network),是一種多層前饋神經(jīng)網(wǎng)絡(luò),主要通過反向傳播算法進(jìn)行學(xué)習(xí)。它通常包括輸入層、一個(gè)或多個(gè)隱藏層和輸出層。BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:12 ?1312次閱讀