chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)算法的核心思想

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)算法的核心思想

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)算法,是機(jī)器學(xué)習(xí)領(lǐng)域中一種在圖像識別、語音識別、自然語言處理等領(lǐng)域具有廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型。本文將從以下幾個方面詳細(xì)介紹CNN的核心思想和算法原理。

一、CNN簡介

CNN是一種類似于人類視覺系統(tǒng)的神經(jīng)網(wǎng)絡(luò)模型,它利用卷積層、池化層、全連接層等多個層次對輸入數(shù)據(jù)進(jìn)行處理和特征提取,最終實現(xiàn)特定目標(biāo)的分類和識別。CNN的典型應(yīng)用包括圖片識別、物體檢測、圖像風(fēng)格轉(zhuǎn)換、自然語言處理等。

二、CNN的核心思想

CNN的核心思想是在保留空間局部相關(guān)性的同時,大幅降低輸入數(shù)據(jù)的維度,從而節(jié)省計算資源,同時提高模型的泛化能力。CNN不同于傳統(tǒng)的全連接神經(jīng)網(wǎng)絡(luò),全連接神經(jīng)網(wǎng)絡(luò)使用大量的神經(jīng)元和權(quán)重對輸入數(shù)據(jù)進(jìn)行處理和特征提取,需要極高的計算量和存儲空間。CNN通過利用卷積、池化等特殊的層次結(jié)構(gòu),減少了神經(jīng)網(wǎng)絡(luò)的參數(shù)數(shù)量和計算時間復(fù)雜度,并且使得網(wǎng)絡(luò)模型更具有普適性、魯棒性。

三、CNN算法的基本組成

1.卷積層(Convolutional Layer):卷積層是CNN的核心組成部分,主要用于模擬圖像處理中的卷積運算,實現(xiàn)對輸入圖像進(jìn)行特征提取和降維。卷積層通過利用小型的卷積核對輸入圖像進(jìn)行處理,得到一張新的特征圖像,從而實現(xiàn)對輸入數(shù)據(jù)的特征提取和降維。

2.池化層(Pooling Layer):池化層通常緊隨在卷積層后面,主要用于對輸入數(shù)據(jù)進(jìn)行下采樣或者上采樣,實現(xiàn)數(shù)據(jù)壓縮和特征提取。池化操作一般有兩種方式:最大池化和平均池化。最大池化選擇池化窗口內(nèi)的最大值作為采樣點的值,平均池化采用窗口內(nèi)的平均值作為采樣點的值。

3.激活函數(shù)(Activation Function):激活函數(shù)是CNN中的一個重要組成部分,主要用于實現(xiàn)網(wǎng)絡(luò)的非線性變換。常用的激活函數(shù)有Sigmoid、ReLU、tanh等函數(shù)。激活函數(shù)可以將線性的網(wǎng)絡(luò)模型轉(zhuǎn)換為非線性的模型,提高模型的表達(dá)能力和泛化能力。

4.全連接層(Fully Connected Layer):全連接層是CNN中的最后一層,主要用于實現(xiàn)網(wǎng)絡(luò)的分類和識別。全連接層將前面若干層的輸出特征向量進(jìn)行拼接,然后通過多個神經(jīng)元進(jìn)行分類和識別。

四、CNN算法的實現(xiàn)步驟

1.數(shù)據(jù)預(yù)處理:對圖像數(shù)據(jù)進(jìn)行預(yù)處理,包括圖像歸一化、數(shù)據(jù)增強(qiáng)等操作。

2.構(gòu)建網(wǎng)絡(luò)結(jié)構(gòu):選擇合適的網(wǎng)絡(luò)結(jié)構(gòu)和超參數(shù),構(gòu)建CNN模型。

3.訓(xùn)練模型:利用訓(xùn)練數(shù)據(jù)對構(gòu)建好的CNN模型進(jìn)行迭代式訓(xùn)練,更新權(quán)重和偏差,不斷尋找最優(yōu)的模型參數(shù)。

4.模型評估:利用測試集對訓(xùn)練好的CNN模型進(jìn)行評估,包括計算模型的準(zhǔn)確率、召回率、F1值等指標(biāo)。

5.模型應(yīng)用:利用訓(xùn)練好的CNN模型對新的數(shù)據(jù)進(jìn)行預(yù)測或者分類。

五、CNN算法的應(yīng)用

1.圖像識別:CNN在圖像識別領(lǐng)域有著廣泛的應(yīng)用,能夠?qū)崿F(xiàn)對圖像的分類和識別,包括聲音、視頻等多種形式的圖像。

2.物體檢測:CNN還可應(yīng)用于物體檢測,如通過檢測圖像中的物體來識別物體的種類和數(shù)量。

3.圖像風(fēng)格轉(zhuǎn)換:CNN的深度學(xué)習(xí)技術(shù)可以實現(xiàn)圖像的風(fēng)格轉(zhuǎn)換,將一張普通的圖像轉(zhuǎn)換為藝術(shù)風(fēng)格圖像。

4.自然語言處理:CNN近年來也開始在自然語言處理領(lǐng)域得到應(yīng)用,如文本分類、情感分析、機(jī)器翻譯等。

六、總結(jié)

CNN算法作為深度學(xué)習(xí)領(lǐng)域中的重要算法之一,在圖像識別、自然語言處理等領(lǐng)域具有廣泛的應(yīng)用前景。本文詳細(xì)介紹了CNN的核心思想、算法原理和實現(xiàn)步驟,以及其在圖像識別、物體檢測、圖像風(fēng)格轉(zhuǎn)換等方面的應(yīng)用場景。未來,隨著硬件和軟件技術(shù)的進(jìn)一步發(fā)展,CNN算法將得到更廣泛的應(yīng)用和發(fā)展。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    自動駕駛中常提的卷積神經(jīng)網(wǎng)絡(luò)是個啥?

    在自動駕駛領(lǐng)域,經(jīng)常會聽到卷積神經(jīng)網(wǎng)絡(luò)技術(shù)。卷積神經(jīng)網(wǎng)絡(luò),簡稱為CNN,是一種專門用來處理網(wǎng)格狀數(shù)據(jù)(比如圖像)的深度學(xué)習(xí)模型。CNN在圖像處理中尤其常見,因為圖像本身就可以看作是由像
    的頭像 發(fā)表于 11-19 18:15 ?1809次閱讀
    自動駕駛中常提的<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>是個啥?

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計原理及在MCU200T上仿真測試

    數(shù)的提出很大程度的解決了BP算法在優(yōu)化深層神經(jīng)網(wǎng)絡(luò)時的梯度耗散問題。當(dāng)x&gt;0 時,梯度恒為1,無梯度耗散問題,收斂快;當(dāng)x&lt;0 時,該層的輸出為0。 CNN
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    :   神經(jīng)網(wǎng)絡(luò)卷積函數(shù)   神經(jīng)網(wǎng)絡(luò)激活函數(shù)   全連接層函數(shù)   神經(jīng)網(wǎng)絡(luò)池化函數(shù)   Softmax 函數(shù)   神經(jīng)網(wǎng)絡(luò)支持功能
    發(fā)表于 10-29 06:08

    卷積運算分析

    的數(shù)據(jù),故設(shè)計了ConvUnit模塊實現(xiàn)單個感受域規(guī)模的卷積運算. 卷積運算:不同于數(shù)學(xué)當(dāng)中提及到的卷積概念,CNN神經(jīng)網(wǎng)絡(luò)中的卷積嚴(yán)格意義
    發(fā)表于 10-28 07:31

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗

    , batch_size=512, epochs=20)總結(jié) 這個核心算法中的卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練過程,是用來對MNIST手寫數(shù)字圖像進(jìn)行分類的。模型將圖像作為輸入,通過卷積和池化
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    讀取。接下來需要使用擴(kuò)展指令,完成神經(jīng)網(wǎng)絡(luò)的部署,此處僅對第一層卷積+池化的部署進(jìn)行說明,其余層與之類似。 1.使用 Custom_Dtrans 指令,將權(quán)重數(shù)據(jù)、輸入數(shù)據(jù)導(dǎo)入硬件加速器內(nèi)。對于權(quán)重
    發(fā)表于 10-20 08:00

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的
    的頭像 發(fā)表于 09-28 10:03 ?647次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    無刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進(jìn)遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計原則

    BP(back propagation)神經(jīng)網(wǎng)絡(luò)是一種按照誤差逆向傳播算法訓(xùn)練的多層前饋神經(jīng)網(wǎng)絡(luò),其網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計原則主要基于以下幾個方面: 一、層次結(jié)構(gòu) 輸入層 :接收外部輸入信號,不
    的頭像 發(fā)表于 02-12 16:41 ?1231次閱讀

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?1281次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    神經(jīng)網(wǎng)絡(luò)(即反向傳播神經(jīng)網(wǎng)絡(luò))的核心,它建立在梯度下降法的基礎(chǔ)上,是一種適合于多層神經(jīng)元網(wǎng)絡(luò)的學(xué)習(xí)算法。該
    的頭像 發(fā)表于 02-12 15:18 ?1256次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?1323次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)基本原理的介紹: 一、網(wǎng)絡(luò)結(jié)構(gòu) BP
    的頭像 發(fā)表于 02-12 15:13 ?1487次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?2214次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法