chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

一文讀懂碳化硅設(shè)計中的熱管理

jf_94163784 ? 來源:jf_94163784 ? 作者:jf_94163784 ? 2023-10-22 22:27 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

隨著我們尋求更強(qiáng)大、更小型的電源解決方案,碳化硅 (SiC) 等寬禁帶 (WBG) 材料變得越來越流行,特別是在一些具有挑戰(zhàn)性的應(yīng)用領(lǐng)域,如汽車驅(qū)動系統(tǒng)、直流快速充電、儲能電站、不間斷電源和太陽能發(fā)電。

這些應(yīng)用有一點(diǎn)非常相似,它們都需要逆變器(圖 1)。它們還需要緊湊且高能效的輕量級解決方案。就汽車而言,輕量化是為了增加續(xù)航里程,而在太陽能應(yīng)用中,這是為了限制太陽能設(shè)備在屋頂上的重量。

wKgaomU1MWSAVk2LAAJUo5e_CMw742.png

圖 1.典型的 EV 動力總成,其中顯示了逆變器

半導(dǎo)體損耗

決定逆變器效率的主要因素之一是所使用的半導(dǎo)體器件(IGBT / MOSFET)。這些器件表現(xiàn)出兩種主要類型的損耗:導(dǎo)通損耗和開關(guān)損耗。導(dǎo)通損耗與開通狀態(tài)下的導(dǎo)通電阻 (RDS(ON)) 成 正比,計算方法為漏極電流 (ID) 與漏源電壓 (VDS) 的乘積。

將 SiC MOSFET 的 VDS特性與類似 Si IGBT 的特性進(jìn)行比較,可以觀察到,對于給定電 流,SiC 器件的 VDS通常較低。還值得注意的是,與 IGBT 不同,SiC MOSFET 中的 VDS與 ID成正比,這意味著它在低電流下的導(dǎo)通損耗會顯著降低。這在高功率應(yīng)用(例如汽車和太陽能)中非常重要,因為它意味著在這些應(yīng)用中,逆變器在其工作生命周期的大部分時間處于小功率工況,效率會有顯著提高,損耗更低找元器件現(xiàn)貨上唯樣商城。

wKgZomU1MWWAfvFlAAJG0HFW7UQ893.png

圖 2.Si IGBT 和 SiC MOSFET 的VDS比較

驅(qū)動損耗與開關(guān)器件所需的柵極電荷 (Qg) 成正比。這是每個開關(guān)周期都需要的,使其與開關(guān)頻率成正比,并且 Si MOSFET 比 SiC 器件更大。設(shè)計人員熱衷于提高開關(guān)頻率以減小磁性元件的尺寸、重量和成本,這意味著使用 SiC 器件會帶來顯著優(yōu)勢。

熱管理影響

電源系統(tǒng)中的所有損耗都會變成熱量,這會影響元件密度,從而增加終端應(yīng)用的尺寸。發(fā)熱組件不僅會升高其自身的內(nèi)部溫度,還會升高整個應(yīng)用的環(huán)境溫度。為確保溫升不會限制運(yùn)行甚至導(dǎo)致組件故障,需要在設(shè)計中進(jìn)行熱管理。

SiC MOSFET 能夠在比硅器件更高的頻率和溫度下運(yùn)行。由于它們可以承受更高的工作溫度,因此減少了對熱管理的需求,可以允許器件本身產(chǎn)生更大的熱量。這意味著,將基于硅的設(shè)計與等效的基于 SiC 的設(shè)計進(jìn)行比較時,熱管理要求要低得多,因為 SiC 系統(tǒng)產(chǎn)生的損耗更低,并且可以在更高的溫度下運(yùn)行。

通過比較,一個典型的 SiC 二極管在 80kHz 下工作時,損耗比同等硅二極管低 73%。因此, 在太陽能應(yīng)用和電動汽車的大功率逆變器中,SiC 器件的效率優(yōu)勢將對降低電力系統(tǒng)的熱管理需 求產(chǎn)生非常顯著的影響,可能降低 80% 或更多。

基于SiC的電源系統(tǒng)的總成本

盡管 SiC 器件投入實際使用已經(jīng)有一段時間了,但人們認(rèn)為基于 SiC 的設(shè)計最終成本將高于硅基設(shè)計,因而在某些方面減緩了 SiC 器件的采用速度。然而,若是直接比較硅基器件和SiC 器件的相對成本,而不考慮每種技術(shù)對整體系統(tǒng)成本的影響,可能會使設(shè)計人員得出錯誤的結(jié)論。

如果我們考慮 30 kW 左右的硅基電源解決方案,用于開關(guān)的半導(dǎo)體器件加起來約占物料清單成本的10%。主要的無源元件(電感器電容器)占剩余成本的大部分,分別為 60% 和 30%。

雖然 SiC 器件的單位成本確實高于等效的硅基器件,但 SiC 器件的性能降低了對電感器和電容器的要求,顯著降低了系統(tǒng)的尺寸、重量和成本。僅此一項就可以將 SiC 的物料清單的總成本低于同等硅基解決方案。然而,正如我們所見,基于 SiC 的解決方案中的熱管理成本也明顯更低。因此,加上這種成本節(jié)約意味著 SiC 設(shè)計更高效、更小、更輕,而且一定程度上成本更低。

安森美 (onsemi)最新的 1200 V 和 900 V N 溝道 EliteSiC MOSFET具有低反向恢復(fù)電荷的體二極管,可以顯著降低損耗,即使在更高的頻率下操作也是如此。芯片尺寸小有助于高頻操作,減少柵極電荷,減小米勒 (Crss) 和輸出 (Coss) 寄生電容,從而減少開關(guān)損耗。

這些新器件的 ID額定電流高達(dá) 118 A,可提高整體系統(tǒng)效率并改善EMI,同時允許設(shè)計人員使用更少(和更小)的無源元件。如果需要處理更高電流,這些器件可以配置為并聯(lián)工作,因為它們具有正溫度系數(shù)而不受溫度影響。

主要有兩種熱管理方法:主動或被動。被動方法使用散熱片或其他類似器件(例如熱管)將多余的熱量從發(fā)熱器件轉(zhuǎn)移到外殼,進(jìn)而消散到周圍環(huán)境中。散熱片的散熱能力隨著尺寸的增加而增加,散熱能力與可用的表面積成正比,為了在最小的體積中實現(xiàn)最大的表面積,這通常會引入復(fù)雜的設(shè)計。

主動散熱通常涉及某種形式的降溫裝置,例如電動汽車應(yīng)用中的風(fēng)扇或冷卻液。由于它們會產(chǎn)生強(qiáng)制氣流,因此它們可以在受限空間內(nèi)提供更多散熱。然而,也有一些明顯的缺點(diǎn),包括風(fēng)扇可靠性和需要在逆變器外殼上開孔以允許氣流流通(這也可能導(dǎo)致灰塵或液體進(jìn)入)。此外,風(fēng)扇需要額外的電能才能運(yùn)行,這會影響整體系統(tǒng)的效率。

總結(jié)

電源設(shè)計人員面臨著提供更高效、更可靠和體積更小的解決方案的挑戰(zhàn),他們正在尋求 SiC 等新技術(shù)來幫助他們應(yīng)對這些挑戰(zhàn)并降低總成本。

基于 SiC 的開關(guān)器件使設(shè)計人員能夠讓系統(tǒng)在更高的溫度和頻率下以更低的損耗運(yùn)行,這是應(yīng)對這些挑戰(zhàn)的關(guān)鍵。此外,這些電氣性能優(yōu)勢意味著無源器件的熱管理要求和元件值的顯著降低,從而進(jìn)一步降低成本和尺寸/重量。因此,SiC 方案能夠以更小的尺寸和更低的成本實現(xiàn)更高的性能水平。

審核編輯 黃宇


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 逆變器
    +關(guān)注

    關(guān)注

    301

    文章

    5130

    瀏覽量

    215561
  • SiC
    SiC
    +關(guān)注

    關(guān)注

    32

    文章

    3633

    瀏覽量

    68874
  • 熱管理
    +關(guān)注

    關(guān)注

    11

    文章

    519

    瀏覽量

    22927
  • 碳化硅
    +關(guān)注

    關(guān)注

    26

    文章

    3400

    瀏覽量

    51991
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    打線門極電阻,助力SiC碳化硅模塊性能提升

    近年來,在國家相關(guān)政策支持下,應(yīng)用于新能源領(lǐng)域的功率模塊迎來了增長新契機(jī)。而SiC碳化硅模塊以其卓越性能,成為新能源核心賽道的“佼佼者”。碳化硅模塊的性能提升對于新能源熱管理優(yōu)化至關(guān)重要,而廣東愛晟電子科技有限公司研發(fā)、量產(chǎn)的打
    的頭像 發(fā)表于 12-31 14:16 ?121次閱讀

    探索碳化硅如何改變能源系統(tǒng)

    作者:Michael Williams, Shawn Luke 碳化硅 (SiC) 已成為各行各業(yè)提高效率和推動脫碳的基石。碳化硅是高級電力系統(tǒng)的推動劑,可滿足全球?qū)稍偕茉础㈦妱悠?(EV
    的頭像 發(fā)表于 10-02 17:25 ?1583次閱讀

    碳化硅 TTV 厚度在 CMP 工藝的反饋控制機(jī)制研究

    、引言 化學(xué)機(jī)械拋光(CMP)工藝是實現(xiàn)碳化硅(SiC)襯底全局平坦化的關(guān)鍵技術(shù),對提升襯底質(zhì)量、保障后續(xù)器件性能至關(guān)重要。總厚度偏差(TTV)作為衡量碳化硅襯底質(zhì)量的核心指標(biāo)之,
    的頭像 發(fā)表于 09-11 11:56 ?662次閱讀
    <b class='flag-5'>碳化硅</b> TTV 厚度在 CMP 工藝<b class='flag-5'>中</b>的反饋控制機(jī)制研究

    碳化硅在電機(jī)驅(qū)動的應(yīng)用

    今天碳化硅器件已經(jīng)在多種應(yīng)用取得商業(yè)的成功。碳化硅MOSFET已被證明是硅IGBT在太陽能、儲能系統(tǒng)、電動汽車充電器和電動汽車等領(lǐng)域的商業(yè)可行替代品。
    的頭像 發(fā)表于 08-29 14:38 ?6876次閱讀
    <b class='flag-5'>碳化硅</b>在電機(jī)驅(qū)動<b class='flag-5'>中</b>的應(yīng)用

    碳化硅器件的應(yīng)用優(yōu)勢

    碳化硅是第三代半導(dǎo)體典型材料,相比之前的硅材料,碳化硅有著高擊穿場強(qiáng)和高熱導(dǎo)率的優(yōu)勢,在高壓、高頻、大功率的場景下更適用。碳化硅的晶體結(jié)構(gòu)穩(wěn)定,哪怕是在超過300℃的高溫環(huán)境下,打破了傳統(tǒng)材料下器件的參數(shù)瓶頸,直接促進(jìn)了新能源等
    的頭像 發(fā)表于 08-27 16:17 ?1351次閱讀
    <b class='flag-5'>碳化硅</b>器件的應(yīng)用優(yōu)勢

    碳化硅晶圓特性及切割要點(diǎn)

    的不同,碳化硅襯底可分為兩類:類是具有高電阻率(電阻率≥10^5Ω·cm)的半絕緣型碳化硅襯底,另類是低電阻率(電阻率區(qū)間為15~30mΩ·cm)的導(dǎo)電型
    的頭像 發(fā)表于 07-15 15:00 ?1026次閱讀
    <b class='flag-5'>碳化硅</b>晶圓特性及切割要點(diǎn)

    碳化硅在多種應(yīng)用場景的影響

    碳化硅技術(shù)進(jìn)行商業(yè)化應(yīng)用時,需要持續(xù)關(guān)注材料缺陷、器件可靠性和相關(guān)封裝技術(shù)。本文還將向研究人員和專業(yè)人士介紹些實用知識,幫助了解碳化硅如何為功率半導(dǎo)體行業(yè)實現(xiàn)高效且可靠的解決方案。
    的頭像 發(fā)表于 06-13 09:34 ?1355次閱讀
    <b class='flag-5'>碳化硅</b>在多種應(yīng)用場景<b class='flag-5'>中</b>的影響

    碳化硅MOS驅(qū)動電壓如何選擇

    碳化硅MOS驅(qū)動電壓選擇15V還是18V,是電力電子設(shè)計的關(guān)鍵權(quán)衡問題。這兩種電壓對器件的導(dǎo)通損耗、開關(guān)特性、熱管理和系統(tǒng)可靠性有顯著影響。
    的頭像 發(fā)表于 06-04 09:22 ?1616次閱讀
    <b class='flag-5'>碳化硅</b>MOS驅(qū)動電壓如何選擇

    碳化硅功率器件在能源轉(zhuǎn)換的應(yīng)用

    隨著全球?qū)沙掷m(xù)能源的需求不斷增加,能源轉(zhuǎn)換技術(shù)的提升已成為實現(xiàn)低碳經(jīng)濟(jì)的重要環(huán)。碳化硅(SiC)功率器件因其在高溫、高電壓和高頻率下優(yōu)越的性能,正逐漸成為現(xiàn)代電力電子設(shè)備的選擇,特別是在能源轉(zhuǎn)換領(lǐng)域的應(yīng)用越來越廣泛。本文將深入探討
    的頭像 發(fā)表于 04-27 14:13 ?942次閱讀

    碳化硅功率器件有哪些特點(diǎn)

    隨著全球?qū)G色能源和高效能電子設(shè)備的需求不斷增加,寬禁帶半導(dǎo)體材料逐漸進(jìn)入了人們的視野。其中,碳化硅(SiC)因其出色的性能而受到廣泛關(guān)注。碳化硅功率器件在電力電子、可再生能源以及電動汽車等領(lǐng)域的應(yīng)用不斷拓展,成為現(xiàn)代電子技術(shù)的重要組成部分。本文將詳細(xì)探討
    的頭像 發(fā)表于 04-21 17:55 ?1139次閱讀

    為什么碳化硅Cascode JFET 可以輕松實現(xiàn)硅到碳化硅的過渡?

    電力電子器件高度依賴于硅(Si)、碳化硅(SiC)和氮化鎵高電子遷移率晶體管(GaN HEMT)等半導(dǎo)體材料。雖然硅直是傳統(tǒng)的選擇,但碳化硅器件憑借其優(yōu)異的性能與可靠性而越來越受歡迎。相較于硅
    發(fā)表于 03-12 11:31 ?910次閱讀
    為什么<b class='flag-5'>碳化硅</b>Cascode JFET 可以輕松實現(xiàn)硅到<b class='flag-5'>碳化硅</b>的過渡?

    碳化硅MOSFET的優(yōu)勢有哪些

    隨著可再生能源的崛起和電動汽車的普及,全球?qū)Ω咝?、低能耗電力電子器件的需求日益增加。在這背景下,碳化硅(SiC)MOSFET作為種新型寬禁帶半導(dǎo)體器件,以其優(yōu)越的性能在功率電子領(lǐng)域中嶄露頭角
    的頭像 發(fā)表于 02-26 11:03 ?1496次閱讀

    Wolfspeed第4代碳化硅技術(shù)解析

    定義行業(yè)基準(zhǔn)。在第 4 代發(fā)布之前,第 3 代碳化硅 MOSFET 憑借多項重要設(shè)計要素的平衡,已在廣泛用例得到驗證,為硬開關(guān)應(yīng)用的全面性能設(shè)定了基準(zhǔn)。
    的頭像 發(fā)表于 02-19 11:35 ?1784次閱讀
    Wolfspeed第4代<b class='flag-5'>碳化硅</b>技術(shù)解析

    碳化硅薄膜沉積技術(shù)介紹

    多晶碳化硅和非晶碳化硅在薄膜沉積方面各具特色。多晶碳化硅以其廣泛的襯底適應(yīng)性、制造優(yōu)勢和多樣的沉積技術(shù)而著稱;而非晶碳化硅則以其極低的沉積溫度、良好的化學(xué)與機(jī)械性能以及廣泛的應(yīng)用前景而
    的頭像 發(fā)表于 02-05 13:49 ?2041次閱讀
    <b class='flag-5'>碳化硅</b>薄膜沉積技術(shù)介紹

    碳化硅功率器件的封裝技術(shù)解析

    碳化硅(SiC)功率器件因其低內(nèi)阻、高耐壓、高頻率和高結(jié)溫等優(yōu)異特性,在電力電子系統(tǒng)得到了廣泛關(guān)注和應(yīng)用。然而,要充分發(fā)揮SiC器件的性能,封裝技術(shù)至關(guān)重要。本文將詳細(xì)解析碳化硅功率器件的封裝技術(shù),從封裝材料選擇、焊接技術(shù)、
    的頭像 發(fā)表于 02-03 14:21 ?1374次閱讀