chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

AI自動化標(biāo)注崛起,數(shù)據(jù)標(biāo)注員要失業(yè)了?

科技云報到 ? 來源:jf_60444065 ? 作者:jf_60444065 ? 2024-01-24 13:06 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

科技云報道原創(chuàng)。

在數(shù)據(jù)標(biāo)注行業(yè)流行著一句話:“有多少智能,就有多少人工”。

由于需要標(biāo)注的數(shù)據(jù)規(guī)模龐大且成本較高,一些互聯(lián)網(wǎng)巨頭及一些AI公司很少自己設(shè)有標(biāo)注團隊,大多交給第三方數(shù)據(jù)服務(wù)公司或者數(shù)據(jù)標(biāo)注團隊來做。

這也衍生出了專為AI而生的人力密集型的數(shù)據(jù)標(biāo)注產(chǎn)業(yè)鏈。

例如,眾包平臺Mechanical Turk上的20萬名AI數(shù)據(jù)標(biāo)注員,就分布在人力成本低廉的非洲和東南亞。印度甚至涌現(xiàn)了不少數(shù)據(jù)標(biāo)注村,他們?yōu)槊绹?、歐洲、澳洲和亞洲的AI公司服務(wù)。

在中國,上百萬名 AI 數(shù)據(jù)標(biāo)注員分布在貴州、山西、山東、河南等省份的二三線城市,并逐步向人力成本更低的縣城滲透。

但諷刺的是,數(shù)據(jù)標(biāo)注員正在被自己服務(wù)的AI所替代,已經(jīng)有企業(yè)開始采用AI進行數(shù)據(jù)標(biāo)注。

據(jù)彭博社1月14日報道,蘋果公司將關(guān)閉圣地亞哥一個與人工智能業(yè)務(wù)相關(guān)的121人團隊,這將導(dǎo)致數(shù)據(jù)標(biāo)注員面臨被解雇的風(fēng)險。

那么,人工數(shù)據(jù)標(biāo)注能否真的被AI全面替代,我們又是否會進入“AI訓(xùn)練AI”的時代呢?

AI自動化標(biāo)注崛起

訓(xùn)練一個高效的大模型必不可少的是高質(zhì)量的數(shù)據(jù)。OpenAI正是借助基于人類標(biāo)注的數(shù)據(jù),才一舉從眾多大模型企業(yè)中脫穎而出,讓ChatGPT成為了大模型競爭中階段性的勝利者。

但同時,OpenAI也因為使用非洲廉價的人工進行數(shù)據(jù)標(biāo)注,被各種媒體口誅筆伐。

對于數(shù)據(jù)標(biāo)注,一定需要找到一個新的方法,才能避免大量使用人工標(biāo)注帶來的包括道德風(fēng)險在內(nèi)的其他潛在麻煩。

因此,全球各大AI巨頭和大型獨角獸,都在進行數(shù)據(jù)標(biāo)注自動化的探索。

蘇黎世大學(xué)研究發(fā)現(xiàn),ChatGPT平均每個標(biāo)注成本低于0.003美元,比眾包平臺便宜20倍;在相關(guān)性、立場、主題等任務(wù)中,ChatGPT也是以4:1的效率優(yōu)勢“碾壓”人類。

來自卡耐基梅隆大學(xué)、耶魯大學(xué)和加州大學(xué)伯克利分校的一組研究人員更是發(fā)現(xiàn):GPT-4在數(shù)據(jù)集標(biāo)注表現(xiàn)上優(yōu)于他們雇用的最熟練的眾包員工。

這一突破為研究人員節(jié)約了超過50 萬美元和2萬個工時。

論文發(fā)出后,有網(wǎng)友評論稱“這是直接端了平臺工作者的飯碗”。

目前在自動駕駛領(lǐng)域,已經(jīng)有車企開始采用AI進行自動化標(biāo)注。

例如,特斯拉一直在積極推進自動化標(biāo)注的進展,從2018至今,特斯拉的標(biāo)注經(jīng)歷了4個階段:

第1階段(2018):只有純?nèi)斯さ亩S的圖像標(biāo)注,效率非常低;

第2階段(2019):開始有3D label,但是是單趟的人工的;

第3階段(2020):采用BEV空間進行標(biāo)注,重投影的精度明顯降低;

第4階段(2021):采用多趟重建去進行標(biāo)注,精度、效率、拓?fù)潢P(guān)系都達到了極高的水準(zhǔn)。

2022年6月,特斯拉裁撤了200名為特斯拉標(biāo)注視頻以改進輔助系統(tǒng)的美國員工。

目前,特斯拉的自動標(biāo)注能力大幅改善,標(biāo)注10000個不到60秒的視頻,大模型只需要運行一周即可,而同樣的工作量人工標(biāo)注卻需要幾個月的時間。

在國內(nèi),理想汽車董事長兼CEO李想曾在2023年4月份舉行的一場論壇上表示,當(dāng)理想汽車使用軟件2.0的大模型,通過訓(xùn)練的方式進行自動化標(biāo)定,過去需要用一年做的事情,基本上3個小時就能完成,效率是人的1000倍。

不僅如此,自動化標(biāo)注工具也在飛速發(fā)展。

國外AI初創(chuàng)公司refuel推出了一個名為Autolabel的開源工具,可以使用市面上主流的大模型來對數(shù)據(jù)集進行標(biāo)注。

該公司的測試結(jié)果稱,Autolabel的標(biāo)注效率相比人工標(biāo)注提高了100倍,成本僅為人工成本的1/7。

國內(nèi)一家名為視智未來的公司也在打造標(biāo)注大模型。他們表示,有些項目已經(jīng)用GPT交付了,準(zhǔn)確率方面達到了80%多,與人工接近。

不得不說,在AI面前,無論成本還是效率,人類可以說是毫無優(yōu)勢。

RLAIF:AI標(biāo)注訓(xùn)練方法

話說回來,ChatGPT是怎么搶了數(shù)據(jù)標(biāo)注員的“飯碗”的?

以往數(shù)據(jù)標(biāo)注員要干的事情,是將標(biāo)注好的數(shù)據(jù)用作AI模型的訓(xùn)練集或評估標(biāo)準(zhǔn),這個過程叫做RLHF(Reinforcement Learning from Human Feedback),即基于人類反饋的強化學(xué)習(xí)。

RLHF也是被ChatGPT、Bard和LLaMA等新興大模型帶火的模型訓(xùn)練方法,它最大的好處就在于能夠?qū)⒛P秃腿祟惖钠脤R,讓大模型給出更符合人類表達習(xí)慣的回答。

不過發(fā)布在arXiv的一份論文表明,這份看起來只有人類能做的工作,也能被AI取代。AI取代了RLHF中的“H”,誕生了一種叫做“RLAIF”的訓(xùn)練方法。

這份由谷歌研究團隊發(fā)布的論文顯示,RLAIF能夠在不依賴數(shù)據(jù)標(biāo)注員的情況下,表現(xiàn)出能夠與RLHF相媲美的訓(xùn)練結(jié)果——

如果拿傳統(tǒng)的監(jiān)督微調(diào)(SFT)訓(xùn)練方法作為基線比較,比起SFT,1200個真人“評委”對RLHF和RLAIF給出答案的滿意度都超過了70%(兩者差距只有2%);另外,如果只比較RLHF和RLAIF給出的答案,真人評委們對兩者的滿意度也是對半分。

具體而言,研究人員主要就“根據(jù)一段文字生成摘要”這一任務(wù),展示了RLAIF的標(biāo)記方法。

首先是序言(Preamble),用來介紹和描述手頭任務(wù)的說明。給定一段文本和兩個可能的摘要,輸出1或2來指示哪個摘要最符合上述定義的連貫性、準(zhǔn)確性、覆蓋范圍和整體質(zhì)量。

其次是樣本示例(1-Shot Exemplar)。給到一段文本,接著給到兩個摘要,以及“摘要1更好”的偏好判斷,讓AI學(xué)著這個示例對接下來的樣本做標(biāo)注。

再次就是給出所要標(biāo)注的樣本(Sample to Annotate),包括一段文本和一對需要標(biāo)記的摘要。

最后是結(jié)尾,用于提示模型的結(jié)束字符串。

就像人類標(biāo)注員會給不同的回答打分一樣(比如滿分5分),AI也會依據(jù)偏好給每個摘要打分,這也是AI和人類標(biāo)注員發(fā)揮作用的關(guān)鍵環(huán)節(jié),主要是用于訓(xùn)練獎勵模型(RM)并生成反饋內(nèi)容。

論文介紹到,為了讓RLAIF方法中AI標(biāo)注更準(zhǔn)確,研究者也加入了其他方法以獲取更好的回答。

譬如為了避免隨機性問題,會進行多次選擇,其間還會對選項的順序進行交換;此外還用到了思維鏈(CoT)推理,來進一步提升與人類偏好的對齊程度。

需要說明的是,谷歌的這篇論文也是第一個證明了RLAIF在某些任務(wù)上能夠產(chǎn)生與RLHF相當(dāng)?shù)挠?xùn)練效果的研究。這意味著不用人類指點,AI也能訓(xùn)練自己的同類了。

該論文的發(fā)布很快收獲了不少關(guān)注。比如有從業(yè)者評論道,等到GPT-5可能就不需要人類數(shù)據(jù)標(biāo)注員了。

盡管這項工作凸顯了RLAIF的潛力,但依然有一些局限性:

首先,這項研究僅探討了摘要總結(jié)任務(wù),關(guān)于其他任務(wù)的泛化性還需要進一步研究。

其次,研究人員沒有評估LLM推理在經(jīng)濟成本上是否比人工標(biāo)注更有優(yōu)勢。

此外,還有一些有趣的問題值得研究,例如RLHF與RLAIF相結(jié)合是否可以優(yōu)于單一的一種方法,使用LLM直接分配獎勵的效果如何,改進AI標(biāo)注器對齊是否會轉(zhuǎn)化為改進的最終策略, 以及是否使用LLM與策略模型大小相同的標(biāo)注器可以進一步改進策略(即模型是否可以“自我改進”)。

重人力轉(zhuǎn)向重技術(shù)

盡管AI自動化標(biāo)注技術(shù)在快速發(fā)展,但第三方數(shù)據(jù)標(biāo)注服務(wù)商并沒那么樂觀。

河南一家眾包平臺的項目經(jīng)理認(rèn)為,自動化標(biāo)注還不能取代60%以上的標(biāo)注需求,只能作為輔助標(biāo)注工具處理單一或特定數(shù)據(jù),提升人效。

另一家數(shù)據(jù)標(biāo)注公司的產(chǎn)品經(jīng)理認(rèn)為,自動化標(biāo)注只能過濾簡單的基礎(chǔ)數(shù)據(jù),還不能像人一樣從復(fù)雜有爭議的場景中精確識別物體。

如果說簡單的標(biāo)注可以用AI來完成,那么人工參與的將是難度更高的數(shù)據(jù)篩選和標(biāo)準(zhǔn)工作,這也意味著數(shù)據(jù)標(biāo)注行業(yè)的門檻將會不斷提高。

作為對照,早在ChatGPT走紅前,OpenAI就組建十幾位博士生來“打標(biāo)”。

而百度在海口的數(shù)據(jù)標(biāo)注基地?fù)碛袛?shù)百名專職大模型數(shù)據(jù)標(biāo)注師,標(biāo)注師的本科率達到100%,需要具備一定的知識儲備和邏輯分析能力。

不過大家也認(rèn)同,未來的數(shù)據(jù)標(biāo)注將從重人力轉(zhuǎn)向重技術(shù)的趨勢。

一家眾包平臺的創(chuàng)始人在和同行交流時說,未來不能堆人力,要有研發(fā)能力。也有從業(yè)者認(rèn)為,人工標(biāo)注對于泛化仍然極其重要,而RLHF+RLAIF混合方法比任何單一方法都要好。

總之,不是被同行“卷死”,就是被技術(shù)“卷死”。數(shù)據(jù)標(biāo)注公司已做好了隨時裁員的準(zhǔn)備,同時向做自動化標(biāo)注工具的方向發(fā)展。

【關(guān)于科技云報道】

專注于原創(chuàng)的企業(yè)級內(nèi)容行家——科技云報道。成立于2015年,是前沿企業(yè)級IT領(lǐng)域Top10媒體。獲工信部權(quán)威認(rèn)可,可信云、全球云計算大會官方指定傳播媒體之一。深入原創(chuàng)報道云計算、大數(shù)據(jù)、人工智能、區(qū)塊鏈等領(lǐng)域。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    37028

    瀏覽量

    290081
  • 大模型
    +關(guān)注

    關(guān)注

    2

    文章

    3348

    瀏覽量

    4720
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    小語種OCR標(biāo)注效率提升10+倍:PaddleOCR+ERNIE 4.5自動標(biāo)注實戰(zhàn)解析

    摘要 :小語種OCR研發(fā)的核心瓶頸在于高質(zhì)量標(biāo)注數(shù)據(jù)的稀缺與高昂成本。本文介紹一種創(chuàng)新的自動化標(biāo)注方案,利用 PaddleOCR 進行文本檢測與裁剪,并調(diào)用 ERNIE 4.5 大模型
    的頭像 發(fā)表于 08-29 11:26 ?3021次閱讀
    小語種OCR<b class='flag-5'>標(biāo)注</b>效率提升10+倍:PaddleOCR+ERNIE 4.5<b class='flag-5'>自動</b><b class='flag-5'>標(biāo)注</b>實戰(zhàn)解析

    自動駕駛數(shù)據(jù)標(biāo)注主要是標(biāo)注什么?

    的結(jié)構(gòu)標(biāo)簽。這些標(biāo)簽不僅構(gòu)成了模型訓(xùn)練與評估的數(shù)據(jù)基礎(chǔ),也直接影響系統(tǒng)在實際道路環(huán)境中的識別、理解和決策能力。準(zhǔn)確、系統(tǒng)的數(shù)據(jù)標(biāo)注能夠有效提升感知算法的魯棒性與泛
    的頭像 發(fā)表于 07-30 11:54 ?642次閱讀
    <b class='flag-5'>自動</b>駕駛<b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>標(biāo)注</b>主要是<b class='flag-5'>標(biāo)注</b>什么?

    什么是自動駕駛數(shù)據(jù)標(biāo)注?如何好做數(shù)據(jù)標(biāo)注

    [首發(fā)于智駕最前沿微信公眾號]在自動駕駛系統(tǒng)的開發(fā)過程中,數(shù)據(jù)標(biāo)注是一項至關(guān)重要的工作。它不僅決定模型訓(xùn)練的質(zhì)量,也直接影響了車輛感知、決策與控制的性能表現(xiàn)。隨著傳感器種類和
    的頭像 發(fā)表于 07-09 09:19 ?717次閱讀
    什么是<b class='flag-5'>自動</b>駕駛<b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>標(biāo)注</b>?如何好做<b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>標(biāo)注</b>?

    端到端數(shù)據(jù)標(biāo)注方案在自動駕駛領(lǐng)域的應(yīng)用優(yōu)勢

    10-20TB,其中需要標(biāo)注數(shù)據(jù)占比超過60%。在這樣的背景下,端到端數(shù)據(jù)標(biāo)注方案應(yīng)運而生,正在重塑自動駕駛的
    的頭像 發(fā)表于 06-23 17:27 ?622次閱讀

    淺析4D-bev標(biāo)注技術(shù)在自動駕駛領(lǐng)域的重要性

    ?自動駕駛技術(shù)的發(fā)展日新月異。從最初簡單的輔助駕駛功能,逐步邁向高度自動化甚至完全自動駕駛的階段。其中,海量且精準(zhǔn)的數(shù)據(jù)是訓(xùn)練高性能自動駕駛
    的頭像 發(fā)表于 06-12 16:10 ?717次閱讀

    數(shù)據(jù)標(biāo)注與大模型的雙向賦能:效率與性能的躍升

    自動化能力,反過來推動數(shù)據(jù)標(biāo)注效率實現(xiàn)數(shù)倍增長,開啟人工智能發(fā)展的全新篇章。一、數(shù)據(jù)標(biāo)注大模型性能的基石大模型的性能高度依賴于訓(xùn)練
    的頭像 發(fā)表于 06-04 17:15 ?1354次閱讀
    <b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>標(biāo)注</b>與大模型的雙向賦能:效率與性能的躍升

    東軟集團入選國家數(shù)據(jù)數(shù)據(jù)標(biāo)注優(yōu)秀案例

    近日,東軟飛標(biāo)醫(yī)學(xué)影像標(biāo)注平臺在國家數(shù)據(jù)局發(fā)布數(shù)據(jù)標(biāo)注優(yōu)秀案例集名單中排名第一(案例名稱“多模態(tài)醫(yī)學(xué)影像智能數(shù)據(jù)
    的頭像 發(fā)表于 05-09 14:37 ?861次閱讀

    大模型預(yù)標(biāo)注自動化標(biāo)注在OCR標(biāo)注場景的應(yīng)用

    OCR,即光學(xué)字符識別,簡單來說就是利用光學(xué)設(shè)備去捕獲圖像并識別文字,最終將圖片中的文字轉(zhuǎn)換為可編輯和可搜索的文本。在數(shù)字化時代,OCR(光學(xué)字符識別)技術(shù)作為處理圖像中文字信息的關(guān)鍵手段,其標(biāo)注
    的頭像 發(fā)表于 04-15 15:18 ?621次閱讀

    自動化標(biāo)注技術(shù)推動AI數(shù)據(jù)訓(xùn)練革新

    標(biāo)貝自動化數(shù)據(jù)標(biāo)注平臺在全棧數(shù)據(jù)標(biāo)注場景式中搭載大模型預(yù)標(biāo)
    的頭像 發(fā)表于 03-14 16:46 ?961次閱讀

    標(biāo)貝自動化數(shù)據(jù)標(biāo)注平臺推動AI數(shù)據(jù)訓(xùn)練革新

    標(biāo)貝自動化數(shù)據(jù)標(biāo)注平臺在全棧數(shù)據(jù)標(biāo)注場景式中搭載大模型預(yù)標(biāo)
    的頭像 發(fā)表于 03-14 16:42 ?1193次閱讀
    標(biāo)貝<b class='flag-5'>自動化</b><b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>標(biāo)注</b>平臺推動<b class='flag-5'>AI</b><b class='flag-5'>數(shù)據(jù)</b>訓(xùn)練革新

    AI自動圖像標(biāo)注工具SpeedDP將是數(shù)據(jù)標(biāo)注行業(yè)發(fā)展的重要引擎

    AI大浪潮下,許多企業(yè)都在不斷借助AI來提升自己的行業(yè)競爭力,數(shù)據(jù)標(biāo)注企業(yè)也不例外,傳統(tǒng)人工標(biāo)注效率不足的弊端困擾
    的頭像 發(fā)表于 01-02 17:53 ?1027次閱讀
    <b class='flag-5'>AI</b><b class='flag-5'>自動</b>圖像<b class='flag-5'>標(biāo)注</b>工具SpeedDP將是<b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>標(biāo)注</b>行業(yè)發(fā)展的重要引擎

    標(biāo)貝數(shù)據(jù)標(biāo)注在智能駕駛訓(xùn)練中的落地案例

    標(biāo)貝科技深耕AI數(shù)據(jù)服務(wù)多年,在無人駕駛、自動駕駛等智能駕駛領(lǐng)域擁有豐富的合作案例。多次采用點云標(biāo)注以及3D&2D融合等標(biāo)注方式為智能駕駛領(lǐng)
    的頭像 發(fā)表于 12-24 15:17 ?2633次閱讀
    標(biāo)貝<b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>標(biāo)注</b>在智能駕駛訓(xùn)練中的落地案例

    標(biāo)貝科技:自動駕駛中的數(shù)據(jù)標(biāo)注類別分享

    的必要條件,數(shù)據(jù)采集、數(shù)據(jù)標(biāo)注服務(wù)已成為支撐自動駕駛熱潮必不可少的一環(huán)。本文將以數(shù)據(jù)標(biāo)注的視角,
    的頭像 發(fā)表于 11-22 15:07 ?2425次閱讀
    標(biāo)貝科技:<b class='flag-5'>自動</b>駕駛中的<b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>標(biāo)注</b>類別分享

    標(biāo)貝科技:自動駕駛中的數(shù)據(jù)標(biāo)注類別分享

    的必要條件,數(shù)據(jù)采集、數(shù)據(jù)標(biāo)注服務(wù)已成為支撐自動駕駛熱潮必不可少的一環(huán)。本文將以數(shù)據(jù)標(biāo)注的視角,
    的頭像 發(fā)表于 11-22 14:58 ?4826次閱讀
    標(biāo)貝科技:<b class='flag-5'>自動</b>駕駛中的<b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>標(biāo)注</b>類別分享

    工具型AI標(biāo)注平臺SpeedDP工作流程是怎樣的?

    SpeedDP作為一個工具型AI平臺,它能提供從數(shù)據(jù)標(biāo)注、模型訓(xùn)練、測試驗證到RockChip嵌入式硬件平臺模型部署的可視AI開發(fā)功能。平
    的頭像 發(fā)表于 11-19 01:02 ?1265次閱讀
    工具型<b class='flag-5'>AI</b><b class='flag-5'>標(biāo)注</b>平臺SpeedDP工作流程是怎樣的?