chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

韓國開發(fā)出大規(guī)模人工神經(jīng)網(wǎng)絡硬件技術

微云疏影 ? 來源:綜合整理 ? 作者:綜合整理 ? 2024-01-26 09:55 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

韓國科技研究院神經(jīng)形態(tài)工程中心研發(fā)了一項集成元件技術,用于構建大規(guī)模人工神經(jīng)網(wǎng)絡硬件設備,其創(chuàng)新之處在于采用hBN制作憶阻器器件,以實現(xiàn)設備之間的類似“樂高”式連接。

wKgaomWzENWAfh-nAAOHi2ta0-o846.png

(A)生物神經(jīng)網(wǎng)絡的原理圖。(B)使用人工神經(jīng)形態(tài)裝置在硬件中實現(xiàn)的人工神經(jīng)網(wǎng)絡的電路原理圖。(C)隨著突觸權重的變化,兩個神經(jīng)元之間的連接強度變化的實驗結果。觀察到下游神經(jīng)元的放電程度隨著突觸重量的減小而降低。

圖片來源:韓國科學技術研究院

借助hBN這種二維材料的優(yōu)質(zhì)性能,該團隊成功地實現(xiàn)了高集成度與超低功耗。他們精心設計的人工神經(jīng)元及突觸器件,在簡化結構并提高網(wǎng)絡可擴展性的同時,更具優(yōu)越的處理能力。此舉將為大規(guī)模神經(jīng)網(wǎng)絡硬件設備的研發(fā)打開新的大門。

這項研究還涉及到在硬件中展示高效的“神經(jīng)元—突觸—神經(jīng)元”結構,模擬人類大腦中的尖峰信號信息傳輸。通過實驗證明,只需調(diào)整人工突觸裝置的重量即可實現(xiàn)兩個神經(jīng)元間尖峰信號信息的調(diào)控。此外,科研團隊進一步展示了將新型hBN設備應用于環(huán)保型低功耗、大規(guī)模AI硬件系統(tǒng)的巨大潛力。

研究人員強調(diào),此類人工神經(jīng)網(wǎng)絡硬件系統(tǒng)可用于各類實際生活場景的海量數(shù)據(jù)處理,涉及諸多領域,包括智慧城市、醫(yī)療保健、通信、氣象預報以及無人駕駛車輛等。這項新研究有望大大降低能源消耗,克服傳統(tǒng)硅CMOS器件擴展局限性,從而有利改善全球環(huán)境污染問題。

人腦在極低能耗情況下仍能高效運作,這無疑給人工智能研究者帶來挑戰(zhàn)。他們試圖從軟件和硬件兩個角度出發(fā),對人腦進行全面細致的模仿。例如,硬件方面,通過模仿人腦神經(jīng)元和突觸之間的聯(lián)通,達到與人腦同樣的信息傳送效果。然而,如何設計出能真正有效運行的大尺度神經(jīng)網(wǎng)絡算法,關鍵在于構建具備成本效益與可擴展特性的硬件系統(tǒng)。本次研究中,他們通過研制如同“樂高”搭積木般的集成元件,開辟了全新的可能途徑。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    NVIDIA實現(xiàn)神經(jīng)網(wǎng)絡渲染技術的突破性增強功能

    近日,NVIDIA 宣布了 NVIDIA RTX 神經(jīng)網(wǎng)絡渲染技術的突破性增強功能。NVIDIA 與微軟合作,將在 4 月的 Microsoft DirectX 預覽版中增加神經(jīng)網(wǎng)絡著色技術
    的頭像 發(fā)表于 04-07 11:33 ?446次閱讀

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經(jīng)網(wǎng)絡 : BP神經(jīng)網(wǎng)絡是一種多層的前饋神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:53 ?673次閱讀

    BP神經(jīng)網(wǎng)絡的優(yōu)缺點分析

    自學習能力 : BP神經(jīng)網(wǎng)絡能夠通過訓練數(shù)據(jù)自動調(diào)整網(wǎng)絡參數(shù),實現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務,無需人工進行復雜的特征工程。 泛化能力強 : BP神經(jīng)網(wǎng)絡通過訓練數(shù)據(jù)學習到的特征表示
    的頭像 發(fā)表于 02-12 15:36 ?925次閱讀

    什么是BP神經(jīng)網(wǎng)絡的反向傳播算法

    BP神經(jīng)網(wǎng)絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經(jīng)網(wǎng)絡的有效方法。以下是關于BP神經(jīng)網(wǎng)絡的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?774次閱讀

    BP神經(jīng)網(wǎng)絡與深度學習的關系

    BP神經(jīng)網(wǎng)絡與深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經(jīng)網(wǎng)絡的基本概念 BP神經(jīng)網(wǎng)絡,即反向傳播神經(jīng)網(wǎng)絡(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法,供各位老師選擇。 01 人工
    的頭像 發(fā)表于 01-09 10:24 ?1203次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構方法

    卷積神經(jīng)網(wǎng)絡的實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡因其在圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術的快速發(fā)展,多種實現(xiàn)工具和框架應運而生,為研究人員和開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?672次閱讀

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    在深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常見的模型。 1. 結構差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-15 14:53 ?1878次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡的區(qū)別

    神經(jīng)網(wǎng)絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發(fā)展,神經(jīng)網(wǎng)絡的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(RNN)和傳統(tǒng)
    的頭像 發(fā)表于 11-15 09:42 ?1131次閱讀

    LSTM神經(jīng)網(wǎng)絡的結構與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(RNN),設計用于解決長期依賴問題,特別是在處理時間序列數(shù)據(jù)時表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-13 10:05 ?1632次閱讀

    Moku人工神經(jīng)網(wǎng)絡101

    不熟悉神經(jīng)網(wǎng)絡的基礎知識,或者想了解神經(jīng)網(wǎng)絡如何優(yōu)化加速實驗研究,請繼續(xù)閱讀,探索基于深度學習的現(xiàn)代智能化實驗的廣闊應用前景。什么是神經(jīng)網(wǎng)絡?“人工
    的頭像 發(fā)表于 11-01 08:06 ?667次閱讀
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡</b>101

    關于卷積神經(jīng)網(wǎng)絡,這些概念你厘清了么~

    隨著人工智能(AI)技術的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡 (CNN)及其對人工智能和機器學習的意義。CNN是一種能夠從
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡 數(shù)學建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡 數(shù)學建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14

    FPGA在深度神經(jīng)網(wǎng)絡中的應用

    隨著人工智能技術的飛速發(fā)展,深度神經(jīng)網(wǎng)絡(Deep Neural Network, DNN)作為其核心算法之一,在圖像識別、語音識別、自然語言處理等領域取得了顯著成果。然而,傳統(tǒng)的深度神經(jīng)網(wǎng)絡模型
    的頭像 發(fā)表于 07-24 10:42 ?1207次閱讀

    Python自動訓練人工神經(jīng)網(wǎng)絡

    人工神經(jīng)網(wǎng)絡(ANN)是機器學習中一種重要的模型,它模仿了人腦神經(jīng)元的工作方式,通過多層節(jié)點(神經(jīng)元)之間的連接和權重調(diào)整來學習和解決問題。Python由于其強大的庫支持(如Tenso
    的頭像 發(fā)表于 07-19 11:54 ?703次閱讀