chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

智能駕駛大模型:有望顯著提升自動駕駛系統(tǒng)的性能和魯棒性

汽車電子設(shè)計 ? 來源:芝能科技 ? 2024-05-07 17:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

智能駕駛大模型是近年來人工智能領(lǐng)域和自動駕駛領(lǐng)域最為前沿的研究方向之一,它融合了深度學(xué)習(xí)、多模態(tài)融合、世界模型構(gòu)建等多種技術(shù),有望顯著提升自動駕駛系統(tǒng)的性能和魯棒性。

01 Transformer架構(gòu)和端到端

2361db3e-0a8e-11ef-a297-92fbcf53809c.png ? ?

Transformer架構(gòu)是近年來神經(jīng)網(wǎng)絡(luò)領(lǐng)域最具突破性的成果之一,它在自然語言處理、計算機視覺等領(lǐng)域取得了巨大成功。

Transformer架構(gòu)擅長建模遠距離依賴關(guān)系,能夠有效關(guān)聯(lián)多種模態(tài)的信息并合成為統(tǒng)一形式的信號,且其性能通常隨著參數(shù)量的擴大而大幅提升。

2365f192-0a8e-11ef-a297-92fbcf53809c.png ?

在智能駕駛領(lǐng)域,Transformer架構(gòu)被廣泛應(yīng)用于感知、預(yù)測和決策等各個環(huán)節(jié)。

在感知環(huán)節(jié),Transformer架構(gòu)可以用于構(gòu)建多模態(tài)融合的感知模型,將攝像頭、雷達、激光雷達等傳感器獲取的感知信息進行融合,以獲得更加完整和準確的環(huán)境感知結(jié)果;

在預(yù)測環(huán)節(jié),Transformer架構(gòu)可以用于構(gòu)建時空預(yù)測模型,預(yù)測未來道路上的行人和車輛運動軌跡,以幫助自動駕駛系統(tǒng)提前規(guī)劃行駛路徑;

在決策環(huán)節(jié),Transformer架構(gòu)可以用于構(gòu)建多模態(tài)決策模型,綜合考慮環(huán)境感知、交通規(guī)則和駕駛策略等因素,做出最優(yōu)的控制決策。

什么是端到端智能駕駛?

2365f192-0a8e-11ef-a297-92fbcf53809c.png

端到端智能駕駛致力于將獨立的感知、預(yù)測、決策等模塊融合成一個統(tǒng)一的模型,使信息能夠在模型的各個部分進行流動,從而實現(xiàn)更優(yōu)化的決策。端到端智能駕駛具有以下優(yōu)勢:

提升效率: 端到端模型可以避免中間結(jié)果的存儲和傳輸,減少計算冗余,提高整體效率。

增強魯棒性: 端到端模型可以使各個模塊之間相互協(xié)作,共同應(yīng)對復(fù)雜場景,提高系統(tǒng)的魯棒性。

降低成本: 端到端模型可以減少模型的數(shù)量和復(fù)雜度,降低軟硬件成本。

然而,端到端智能駕駛也面臨著以下挑戰(zhàn):

可解釋性: 端到端模型的內(nèi)部結(jié)構(gòu)較為復(fù)雜,難以解釋其決策過程,這可能會導(dǎo)致安全隱患。

魯棒性: 端到端模型對訓(xùn)練數(shù)據(jù)的依賴性較大,如果訓(xùn)練數(shù)據(jù)存在偏差或不足,可能會導(dǎo)致模型泛化能力差,在實際應(yīng)用中表現(xiàn)不佳。

236e2db2-0a8e-11ef-a297-92fbcf53809c.png

02 什么是多模態(tài)智能駕駛

多模態(tài)智能駕駛旨在融合視覺、聽覺、語言等多種傳感器信息,以提升感知和決策的魯棒性。

多模態(tài)智能駕駛可以克服單一傳感器感知信息不足、魯棒性差等缺點,為自動駕駛系統(tǒng)提供更加全面和可靠的環(huán)境感知。

2379b768-0a8e-11ef-a297-92fbcf53809c.png

多模態(tài)大模型可以嫁接大語言模型已涌現(xiàn)的上下文學(xué)習(xí)、零樣本學(xué)習(xí)、邏輯推理、常識判斷等能力,提高智能駕駛面對復(fù)雜場景的泛化性與可解釋性

例如,通過視覺和激光雷達傳感器可以獲取車輛周圍的靜態(tài)環(huán)境信息,通過聽覺傳感器可以獲取周圍車輛的喇叭聲、引擎聲等動態(tài)信息,通過語言傳感器可以理解交通指示牌、語音導(dǎo)航指令等信息。

這些信息經(jīng)過多模態(tài)大模型的融合處理,可以使自動駕駛系統(tǒng)更加準確地理解周圍環(huán)境,并做出更合理的決策。

什么是世界模型?

世界模型是一種用于描述和預(yù)測駕駛環(huán)境的模型,它可以幫助自動駕駛系統(tǒng)提前規(guī)劃行駛路徑,并應(yīng)對突發(fā)情況。

世界模型通常包含以下要素:

靜態(tài)地圖: 靜態(tài)地圖描述了道路的結(jié)構(gòu)、車道線、交通標志等信息。

動態(tài)信息: 動態(tài)信息描述了道路上行駛的車輛、行人、障礙物等信息。

交通規(guī)則: 交通規(guī)則描述了道路行駛的基本規(guī)則,例如紅燈停綠燈行、限速等。

世界模型的構(gòu)建通常需要大量的駕駛數(shù)據(jù)和先進的模型訓(xùn)練方法。例如,可以利用來自攝像頭、雷達、激光雷達等傳感器的感知數(shù)據(jù),以及來自高精度地圖、交通信息等數(shù)據(jù),來訓(xùn)練世界模型。

還有哪些前沿技術(shù)?

除了上述幾項主要方向之外,還有SAM、NeRF等其他前沿技術(shù)也被應(yīng)用于智能駕駛大模型中,這些技術(shù)有望進一步提升智能駕駛系統(tǒng)的性能和能力。

SAM(Self-Attention Mapping):SAM是一種基于自注意力機制的時空感知模型,可以有效地捕捉環(huán)境中的動態(tài)變化,并預(yù)測未來環(huán)境的演化趨勢。

NeRF(Neurual Radiance Fields):NeRF是一種基于神經(jīng)網(wǎng)絡(luò)的渲染技術(shù),可以利用稀疏的觀測數(shù)據(jù)生成逼真的三維場景重建,為自動駕駛系統(tǒng)提供更加沉浸式的環(huán)境感知。

小結(jié)

智能駕駛大模型是智能駕駛領(lǐng)域近年來最具前瞻性的研究方向之一,智能駕駛大模型也面臨著一些挑戰(zhàn),例如模型的復(fù)雜度、訓(xùn)練數(shù)據(jù)的需求量、倫理問題等。 智能駕駛大模型代表了自動駕駛技術(shù)發(fā)展的未來趨勢。

審核編輯:劉清
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49741

    瀏覽量

    261575
  • 智能駕駛
    +關(guān)注

    關(guān)注

    5

    文章

    2947

    瀏覽量

    50965
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5590

    瀏覽量

    123912
  • 自動駕駛系統(tǒng)
    +關(guān)注

    關(guān)注

    0

    文章

    69

    瀏覽量

    7280
  • 大模型
    +關(guān)注

    關(guān)注

    2

    文章

    3442

    瀏覽量

    4970

原文標題:芝能智駕 | 什么是智能駕駛大模型?

文章出處:【微信號:QCDZSJ,微信公眾號:汽車電子設(shè)計】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    模型中常提的快慢思考會對自動駕駛產(chǎn)生什么影響?

    2024年7月,理想汽車發(fā)布的基于端到端模型、VLM視覺語言模型和世界模型的全新自動駕駛技術(shù)架構(gòu)標志著其全棧自研的智能
    的頭像 發(fā)表于 11-22 10:59 ?2274次閱讀
    大<b class='flag-5'>模型</b>中常提的快慢思考會對<b class='flag-5'>自動駕駛</b>產(chǎn)生什么影響?

    如何確保自動駕駛汽車感知的準確?

    感知的定義及原理 在聊這個話題之前,我們先聊一聊感知是什么,自動駕駛感知系統(tǒng)就是一個把外界變成機器可用信息的工程流水線。感知系統(tǒng)的輸入主要依靠如攝像頭(可見光、近紅外)、激光雷達(LiDAR)、毫米波雷達(RADAR)、超聲
    的頭像 發(fā)表于 08-23 15:06 ?1377次閱讀
    如何確保<b class='flag-5'>自動駕駛</b>汽車感知的準確<b class='flag-5'>性</b>?

    決定自動駕駛激光雷達感知質(zhì)量的因素有哪些?

    一個激光雷達是否適合自動駕駛,基本上取決于它在距離(range)、角度/點云分辨率(resolution)、以及在現(xiàn)實世界復(fù)雜條件下的(robustness)。
    的頭像 發(fā)表于 08-20 12:08 ?1883次閱讀
    決定<b class='flag-5'>自動駕駛</b>激光雷達感知質(zhì)量的因素有哪些?

    自動駕駛數(shù)據(jù)標注主要是標注什么?

    的結(jié)構(gòu)化標簽。這些標簽不僅構(gòu)成了模型訓(xùn)練與評估的數(shù)據(jù)基礎(chǔ),也直接影響系統(tǒng)在實際道路環(huán)境中的識別、理解和決策能力。準確、系統(tǒng)的數(shù)據(jù)標注能夠有效提升感知算法的
    的頭像 發(fā)表于 07-30 11:54 ?911次閱讀
    <b class='flag-5'>自動駕駛</b>數(shù)據(jù)標注主要是標注什么?

    低速自動駕駛與乘用車自動駕駛在技術(shù)要求上有何不同?

    到我們生活的方方面面。與面向開放道路、高速巡航的乘用車自動駕駛系統(tǒng)相比,低速小車在技術(shù)實現(xiàn)、系統(tǒng)架構(gòu)、硬件配置、軟件算法及安全冗余等方面都存在顯著差異和針對
    的頭像 發(fā)表于 07-14 09:10 ?673次閱讀
    低速<b class='flag-5'>自動駕駛</b>與乘用車<b class='flag-5'>自動駕駛</b>在技術(shù)要求上有何不同?

    新能源車軟件單元測試深度解析:自動駕駛系統(tǒng)視角

    、道路塌陷)的測試用例庫,通過虛擬仿真和真實路測數(shù)據(jù)回灌驗證算法的。 ?第二部分:自動駕駛軟件單元測試技術(shù)體系****? ?測試對象分類與測試策略? ? 數(shù)據(jù)驅(qū)動型模塊(如傳
    發(fā)表于 05-12 15:59

    AI將如何改變自動駕駛

    自動駕駛帶來哪些變化?其實AI可以改變自動駕駛技術(shù)的各個環(huán)節(jié),從感知能力的提升到?jīng)Q策框架的優(yōu)化,從安全性能的增強到測試驗證的加速,AI可以讓自動駕駛
    的頭像 發(fā)表于 05-04 09:58 ?632次閱讀

    模型如何推動自動駕駛技術(shù)革新?

    [首發(fā)于智駕最前沿微信公眾號]近年來,人工智能技術(shù)正以前所未有的速度在各個領(lǐng)域滲透與應(yīng)用,而大模型(大語言模型和多模態(tài)大模型)的迅猛發(fā)展為自動駕駛
    的頭像 發(fā)表于 04-20 13:16 ?691次閱讀
    大<b class='flag-5'>模型</b>如何推動<b class='flag-5'>自動駕駛</b>技術(shù)革新?

    自動駕駛模型中常提的Token是個啥?對自動駕駛有何影響?

    近年來,人工智能技術(shù)迅速發(fā)展,大規(guī)模深度學(xué)習(xí)模型(即大模型)在自然語言處理、計算機視覺、語音識別以及自動駕駛等多個領(lǐng)域取得了突破進展。
    的頭像 發(fā)表于 03-28 09:16 ?983次閱讀

    NVIDIA Halos自動駕駛汽車安全系統(tǒng)發(fā)布

    NVIDIA 整合了從云端到車端的安全自動駕駛開發(fā)技術(shù)套件,涵蓋車輛架構(gòu)到 AI 模型,包括芯片、軟件、工具和服務(wù)。 物理 AI 正在為自動駕駛和機器人開發(fā)技術(shù)的交叉領(lǐng)域釋放新的可能
    的頭像 發(fā)表于 03-25 14:51 ?967次閱讀

    DiffusionDrive首次在端到端自動駕駛中引入擴散模型

    多樣提升自動駕駛和安全的關(guān)鍵,但現(xiàn)有方法
    的頭像 發(fā)表于 03-08 13:59 ?1471次閱讀
    DiffusionDrive首次在端到端<b class='flag-5'>自動駕駛</b>中引入擴散<b class='flag-5'>模型</b>

    光庭信息自動駕駛系統(tǒng)亮相CES 2025

    自動駕駛的魅力在于將人類從繁瑣的駕駛任務(wù)中解放出來,隨著 AI 大模型和大數(shù)據(jù)技術(shù)的突破,自動駕駛技術(shù)的發(fā)展及實際應(yīng)用也成為 CES 2025 的重頭戲之一。展會上,光庭信息自主研發(fā)的
    的頭像 發(fā)表于 01-13 14:23 ?1237次閱讀

    從《自動駕駛地圖數(shù)據(jù)規(guī)范》聊高精地圖在自動駕駛中的重要

    自動駕駛地圖作為L3級及以上自動駕駛技術(shù)的核心基礎(chǔ)設(shè)施,其重要隨著智能駕駛技術(shù)的發(fā)展愈發(fā)顯著
    的頭像 發(fā)表于 01-05 19:24 ?2869次閱讀
    從《<b class='flag-5'>自動駕駛</b>地圖數(shù)據(jù)規(guī)范》聊高精地圖在<b class='flag-5'>自動駕駛</b>中的重要<b class='flag-5'>性</b>

    自動駕駛中常提的是個啥?

    隨著自動駕駛技術(shù)的快速發(fā)展,(Robustness)成為評價自動駕駛系統(tǒng)的重要指標之一。很
    的頭像 發(fā)表于 01-02 16:32 ?8355次閱讀
    <b class='flag-5'>自動駕駛</b>中常提的<b class='flag-5'>魯</b><b class='flag-5'>棒</b><b class='flag-5'>性</b>是個啥?