chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

談?wù)?十折交叉驗(yàn)證訓(xùn)練模型

丙丁先生的自學(xué)旅程 ? 來(lái)源:丙丁先生的自學(xué)旅程 ? 作者:丙丁先生的自學(xué)旅 ? 2024-05-15 09:30 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

十折交叉驗(yàn)證是K-fold交叉驗(yàn)證的一個(gè)具體實(shí)例,其中K被設(shè)置為10。這種方法將整個(gè)數(shù)據(jù)集分成十個(gè)相等(或幾乎相等)的部分,依次使用其中的每一部分作為測(cè)試集,而其余九部分合并起來(lái)形成訓(xùn)練集。這個(gè)過程會(huì)重復(fù)十次,每次選擇不同的部分作為測(cè)試集。以下是十折交叉驗(yàn)證的一些關(guān)鍵要點(diǎn):

1. 數(shù)據(jù)效率:相比于簡(jiǎn)單的訓(xùn)練/測(cè)試集劃分,十折交叉驗(yàn)證可以更高效地利用數(shù)據(jù)。在十折交叉驗(yàn)證中,大約90%的數(shù)據(jù)用于訓(xùn)練,剩下的10%用于測(cè)試。
2. 模型評(píng)估:通過多次訓(xùn)練和驗(yàn)證,可以得到模型性能的平均值,這有助于減少評(píng)估結(jié)果的偶然性和偏差,從而提高模型性能評(píng)估的穩(wěn)定性和可靠性。
3. 超參數(shù)優(yōu)化:十折交叉驗(yàn)證不僅可以用來(lái)評(píng)估模型的性能,還可以用來(lái)調(diào)整和優(yōu)化模型的超參數(shù)。通過在不同的數(shù)據(jù)子集上進(jìn)行訓(xùn)練和驗(yàn)證,可以找到最佳的超參數(shù)組合,從而提高模型的泛化能力。
4. 避免過擬合:由于模型需要在多個(gè)不同的數(shù)據(jù)集上進(jìn)行訓(xùn)練和驗(yàn)證,這有助于防止模型過度擬合特定的數(shù)據(jù)分布,從而提高模型在新數(shù)據(jù)上的預(yù)測(cè)能力。
5. 數(shù)據(jù)集劃分:在實(shí)際應(yīng)用中,十折交叉驗(yàn)證要求數(shù)據(jù)集中的每個(gè)樣本都有機(jī)會(huì)出現(xiàn)在訓(xùn)練集和測(cè)試集中。這種劃分方式有助于確保模型的性能評(píng)估不會(huì)受到特定數(shù)據(jù)劃分的影響。
6. 最終模型訓(xùn)練:一旦通過十折交叉驗(yàn)證確定了最佳超參數(shù),通常會(huì)使用所有的數(shù)據(jù)重新訓(xùn)練最終模型,以便在實(shí)際應(yīng)用中使用。

總的來(lái)說(shuō),十折交叉驗(yàn)證是一種強(qiáng)大且常用的模型評(píng)估和超參數(shù)優(yōu)化技術(shù),它通過多次訓(xùn)練和驗(yàn)證來(lái)提高模型評(píng)估的準(zhǔn)確性和可靠性。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3644

    瀏覽量

    51682
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1229

    瀏覽量

    26030
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    本帖欲分享在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)。我們采用jupyter notebook作為開發(fā)IDE,以TensorFlow2為訓(xùn)練框架,目標(biāo)是訓(xùn)練一個(gè)手寫數(shù)字識(shí)
    發(fā)表于 10-22 07:03

    ai_cube訓(xùn)練模型最后部署失敗是什么原因?

    ai_cube訓(xùn)練模型最后部署失敗是什么原因?文件保存路徑里也沒有中文 查看AICube/AI_Cube.log,看看報(bào)什么錯(cuò)?
    發(fā)表于 07-30 08:15

    make sence成的XML文件能上傳到自助訓(xùn)練模型上嗎?

    make sence成的XML文件能上傳到自助訓(xùn)練模型上嗎
    發(fā)表于 06-23 07:38

    運(yùn)行kmodel模型驗(yàn)證一直報(bào)錯(cuò)怎么解決?

    我這運(yùn)行kmodel模型驗(yàn)證一直報(bào)錯(cuò),所以沒法做kmodel模型好壞驗(yàn)證,不知道怎么解決這個(gè)問題,重新訓(xùn)練一個(gè)kmodel
    發(fā)表于 06-10 08:02

    恩智浦eIQ Time Series Studio工具使用教程之模型訓(xùn)練

    大家好,eIQ Time SeriesStudio又和大家見面啦!本章為大家?guī)?lái)工具核心部分-模型訓(xùn)練。
    的頭像 發(fā)表于 03-25 15:25 ?1419次閱讀
    恩智浦eIQ Time Series Studio工具使用教程之<b class='flag-5'>模型</b><b class='flag-5'>訓(xùn)練</b>

    請(qǐng)問如何在imx8mplus上部署和運(yùn)行YOLOv5訓(xùn)練模型

    我正在從事 imx8mplus yocto 項(xiàng)目。我已經(jīng)在自定義數(shù)據(jù)集上的 YOLOv5 上訓(xùn)練了對(duì)象檢測(cè)模型。它在 ubuntu 電腦上運(yùn)行良好?,F(xiàn)在我想在我的 imx8mplus 板上運(yùn)行該模型
    發(fā)表于 03-25 07:23

    數(shù)據(jù)標(biāo)注服務(wù)—奠定大模型訓(xùn)練的數(shù)據(jù)基石

    數(shù)據(jù)標(biāo)注是大模型訓(xùn)練過程中不可或缺的基礎(chǔ)環(huán)節(jié),其質(zhì)量直接影響著模型的性能表現(xiàn)。在大模型訓(xùn)練中,數(shù)據(jù)標(biāo)注承擔(dān)著將原始數(shù)據(jù)轉(zhuǎn)化為機(jī)器可理解、可學(xué)
    的頭像 發(fā)表于 03-21 10:30 ?2264次閱讀

    利用RAKsmart服務(wù)器托管AI模型訓(xùn)練的優(yōu)勢(shì)

    AI模型訓(xùn)練需要強(qiáng)大的計(jì)算資源、高效的存儲(chǔ)和穩(wěn)定的網(wǎng)絡(luò)支持,這對(duì)服務(wù)器的性能提出了較高要求。而RAKsmart服務(wù)器憑借其核心優(yōu)勢(shì),成為托管AI模型訓(xùn)練的理想選擇。下面,AI部落小編為
    的頭像 發(fā)表于 03-18 10:08 ?510次閱讀

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功怎么處理?

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功咋辦,試了好幾個(gè)模型壓縮了也不行,ram占用過大,有無(wú)解決方案?
    發(fā)表于 03-11 07:18

    是否可以輸入隨機(jī)數(shù)據(jù)集來(lái)生成INT8訓(xùn)練后量化模型?

    無(wú)法確定是否可以輸入隨機(jī)數(shù)據(jù)集來(lái)生成 INT8 訓(xùn)練后量化模型。
    發(fā)表于 03-06 06:45

    使用OpenVINO?訓(xùn)練擴(kuò)展對(duì)水平文本檢測(cè)模型進(jìn)行微調(diào),收到錯(cuò)誤信息是怎么回事?

    已針對(duì)水平文本檢測(cè)模型運(yùn)行OpenVINO?訓(xùn)練擴(kuò)展中的 微調(diào) 步驟,并收到錯(cuò)誤消息: RuntimeError: Failed to find annotation files
    發(fā)表于 03-05 06:48

    小白學(xué)大模型訓(xùn)練大語(yǔ)言模型的深度指南

    在當(dāng)今人工智能飛速發(fā)展的時(shí)代,大型語(yǔ)言模型(LLMs)正以其強(qiáng)大的語(yǔ)言理解和生成能力,改變著我們的生活和工作方式。在最近的一項(xiàng)研究中,科學(xué)家們?yōu)榱松钊肓私馊绾胃咝У?b class='flag-5'>訓(xùn)練大型語(yǔ)言模型,進(jìn)行了超過
    的頭像 發(fā)表于 03-03 11:51 ?1190次閱讀
    小白學(xué)大<b class='flag-5'>模型</b>:<b class='flag-5'>訓(xùn)練</b>大語(yǔ)言<b class='flag-5'>模型</b>的深度指南

    騰訊公布大語(yǔ)言模型訓(xùn)練新專利

    近日,騰訊科技(深圳)有限公司公布了一項(xiàng)名為“大語(yǔ)言模型訓(xùn)練方法、裝置、計(jì)算機(jī)設(shè)備及存儲(chǔ)介質(zhì)”的新專利。該專利的公布,標(biāo)志著騰訊在大語(yǔ)言模型訓(xùn)練領(lǐng)域取得了新的突破。 據(jù)專利摘要顯示,
    的頭像 發(fā)表于 02-10 09:37 ?690次閱讀

    模型訓(xùn)練框架(五)之Accelerate

    Hugging Face 的 Accelerate1是一個(gè)用于簡(jiǎn)化和加速深度學(xué)習(xí)模型訓(xùn)練的庫(kù),它支持在多種硬件配置上進(jìn)行分布式訓(xùn)練,包括 CPU、GPU、TPU 等。Accelerate 允許用戶
    的頭像 發(fā)表于 01-14 14:24 ?1758次閱讀

    GPU是如何訓(xùn)練AI大模型

    在AI模型訓(xùn)練過程中,大量的計(jì)算工作集中在矩陣乘法、向量加法和激活函數(shù)等運(yùn)算上。這些運(yùn)算正是GPU所擅長(zhǎng)的。接下來(lái),AI部落小編帶您了解GPU是如何訓(xùn)練AI大模型的。
    的頭像 發(fā)表于 12-19 17:54 ?1282次閱讀