chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

大模型應用之路:從提示詞到通用人工智能(AGI)

京東云 ? 來源:jf_75140285 ? 作者:jf_75140285 ? 2024-06-14 10:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

大模型在人工智能領域的應用正迅速擴展,從最初的提示詞(Prompt)工程到追求通用人工智能(AGI)的宏偉目標,這一旅程充滿了挑戰(zhàn)與創(chuàng)新。本文將探索大模型在實際應用中的進展,以及它們?nèi)绾螢閷崿F(xiàn)AGI鋪平道路。

基于AI大模型的推理功能,結(jié)合了RAG(檢索增強生成)、智能體(Agent)、知識庫、向量數(shù)據(jù)庫、知識圖譜等先進技術,我們向?qū)崿F(xiàn)真正的AGI(通用人工智能)邁出了重要步伐。

為了方便大家理解,將AI大模型視作類比人類大腦的存在,我們與之交互,仿佛是在與一個能夠理解并使用人類語言的智能體溝通。這樣的AI大模型能夠接收信息、生成回應,并且提供答案。然而,就像人類也會犯錯一樣,AI大模型提供的答案也可能不完全準確。下面分別對提示詞工程,RAG,AI Agent, Fine-tuning,F(xiàn)unction calling ,知識庫,知識圖譜等應用進行詳細介紹。

一、提示詞工程(Prompt Engineering)

提示詞工程涉及設計和使用特定的提示詞或問題構(gòu)造來引導語言模型生成期望的輸出或執(zhí)行特定的任務。提示詞就像是給AI的一把鑰匙,用來開啟特定知識寶庫的大門。

Prompt = 角色 + 任務 + 要求 + 細節(jié)【步驟拆解、范例說明,技巧點撥等】

wKgZomZrqM6AVMZZAADa75cpBWs825.png

?

提示詞看起來很簡單,給出一句話,大模型就會給出問題響應,但要想大模型精準回復問題,是自己想要的答案,還需要有結(jié)構(gòu)化的提示詞知識。

1.1 結(jié)構(gòu)化Prompt

結(jié)構(gòu)化Prompt是一種預定義的輸入格式,它指導AI對話系統(tǒng)以特定的方式理解和響應用戶的查詢。與傳統(tǒng)的自由形式的Prompt相比,結(jié)構(gòu)化Prompt通過提供清晰的指令和格式要求,幫助AI更準確地捕捉用戶的意圖。

1.2 結(jié)構(gòu)化Prompt的重要性

1.提高理解力:結(jié)構(gòu)化Prompt通過明確的指令幫助AI更好地理解用戶的查詢意圖。

2.增強一致性:它們確保了對話的一致性,因為AI會以相同的方式處理類似的查詢。

3.提升效率:結(jié)構(gòu)化的數(shù)據(jù)更容易被AI處理,從而提高了對話系統(tǒng)的整體效率。

4.減少歧義:它們減少了用戶的輸入歧義,降低了AI誤解用戶意圖的可能性。

1.3 如何設計結(jié)構(gòu)化Prompt

1.明確目標:在設計Prompt之前,明確你希望AI執(zhí)行的任務或回答的問題類型。

2.使用清晰的語法:確保Prompt使用簡單、明確的語法,避免模糊或復雜的句子結(jié)構(gòu)。

3.包含關鍵信息:確保Prompt包含了完成任務所需的所有關鍵信息。

4.測試和迭代:設計完成后,通過測試來驗證Prompt的有效性,并根據(jù)反饋進行迭代。

1.4 構(gòu)建結(jié)構(gòu)化Prompt的要素

結(jié)構(gòu)化Prompt涉及多個關鍵部分:

1.角色定義(# Role):明確AI角色,增強特定領域的信息輸出。

2.作者信息(## Profile):包括作者、版本和描述,增加信息的可信度。

3.目標設定(## Goals):一句話明確Prompt的目的。

4.限制條件(## Constrains):幫助AI“剪枝”,避免無效的信息分支。

5.技能描述(## Skills):強化AI在特定領域的知識和能力。

6.工作流程(## Workflow):指導AI如何交流和輸出信息。

7.初始化對話(# Initialization):開始時的對話,重申關注的重點。

?

二、RAG與知識庫

RAG即Retrieval-Augmented Generation,是一種結(jié)合檢索和生成技術的模型。它通過引用外部知識庫的信息來生成答案或內(nèi)容,具有較強的可解釋性和定制能力,適用于問答系統(tǒng)、文檔生成、智能助手等多個自然語言處理任務中。RAG模型的優(yōu)勢在于通用性強、可實現(xiàn)即時的知識更新,以及通過端到端評估方法提供更高效和精準的信息服務。

為什么要用 RAG,因為大模型(LLM)的知識存在固有缺陷:

?知識不新:由于訓練的時間和成本,大模型的知識往往是舊的,如 GPT-4 Turbo 的知識庫截至時間是 2023 年 4 月

?知識不全:缺少專業(yè)的領域知識或私有的業(yè)務知識

2.1 RAG架構(gòu)

RAG的工作原理是通過檢索大規(guī)模文檔集合中的相關信息,然后利用這些信息來指導文本的生成,從而提高預測的質(zhì)量和準確性。

?

wKgaomZrqM-AN1XeAAGWqrLlZEQ986.png

?

RAG = LLM+知識庫

具體而言,RAG通過三個關鍵部分實現(xiàn)工作:檢索、利用和生成。在檢索階段,系統(tǒng)會從文檔集合中檢索相關信息;在利用階段,系統(tǒng)會利用這些檢索到的信息來填充文本或回答問題;最后在生成階段,系統(tǒng)會根據(jù)檢索到的知識來生成最終的文本內(nèi)容。

wKgaomZrqNKAKQ2pAAhuHXzB3j4556.png

通過這一過程,RAG模型能夠在各種自然語言處理任務中發(fā)揮作用,如問答系統(tǒng)、文檔生成和自動摘要、智能助手和虛擬代理、信息檢索以及知識圖譜填充等。同時,RAG模型具有及時更新、解釋性強、高度定制能力、安全隱私管理以及減少訓練成本等優(yōu)點。與微調(diào)相比,RAG是通用的,適用于多種任務,并且能夠?qū)崿F(xiàn)即時的知識更新而無需重新訓練模型。

?

2.2 知識庫介紹

對于企業(yè)而言,構(gòu)建一個符合自身業(yè)務需求的知識庫是至關重要的。通過RAG、微調(diào)等技術手段,我們可以將通用的大模型轉(zhuǎn)變?yōu)閷μ囟ㄐ袠I(yè)有著深度理解的“行業(yè)專家”,從而更好地服務于企業(yè)的具體業(yè)務需求。這樣的知識庫基本上適用于每個公司各行各業(yè),包括:市場調(diào)研知識庫、人力資源知識庫、項目管理知識庫、技術文檔知識庫、項目流程知識庫、招標投標知識庫等等。

知識庫的技術架構(gòu)分為兩部分:

第一、離線的知識數(shù)據(jù)向量化

?加載:通過文檔加載器(Document Loaders)加載數(shù)據(jù)/知識庫。

?拆分:文本拆分器將大型文檔拆分為較小的塊。便于向量或和后續(xù)檢索。

?向量:對拆分的數(shù)據(jù)塊,進行 Embedding 向量化處理。

?存儲:將向量化的數(shù)據(jù)塊存儲到向量數(shù)據(jù)庫 VectorDB 中,方便進行搜索。

wKgaomZrqNOAOWTHAAJf7cQL1-g660.png

?

第二、在線的知識檢索返回

?檢索:根據(jù)用戶輸入,使用檢索器從存儲中檢索相關的 Chunk。

?生成:使用包含問題和檢索到的知識提示詞,交給大語言模型生成答案。

wKgZomZrqNSAUHfDAAHDrSQRX08899.png

?

2.3 RAG應用場景

1.問答系統(tǒng)(QA Systems):RAG可以用于構(gòu)建強大的問答系統(tǒng),能夠回答用戶提出的各種問題。它能夠通過檢索大規(guī)模文檔集合來提供準確的答案,無需針對每個問題進行特定訓練。

2.文檔生成和自動摘要(Document Generation and Automatic Summarization):RAG可用于自動生成文章段落、文檔或自動摘要,基于檢索的知識來填充文本,使得生成的內(nèi)容更具信息價值。

3.智能助手和虛擬代理(Intelligent Assistants and Virtual Agents):RAG可以用于構(gòu)建智能助手或虛擬代理,結(jié)合聊天記錄回答用戶的問題、提供信息和執(zhí)行任務,無需進行特定任務微調(diào)。

4.信息檢索(Information Retrieval):RAG可以改進信息檢索系統(tǒng),使其更準確深刻。用戶可以提出更具體的查詢,不再局限于關鍵詞匹配。

5.知識圖譜填充(Knowledge Graph Population):RAG可以用于填充知識圖譜中的實體關系,通過檢索文檔來識別和添加新的知識點。

三、智能體(AI Agent)

在 AI 大模型時代,任何具備獨立思考能力并能與環(huán)境進行交互的實體,都可以被抽象地描述為智能體(Agent)。這個英文詞匯在 AI 領域被普遍采納,用以指代那些能夠自主活動的軟件或硬件實體。在國內(nèi),我們習慣將其譯為“智能體”,盡管過去也曾出現(xiàn)過“代理”、“代理者”或“智能主體”等譯法。智能體構(gòu)建在大語言模型的推理能力基礎上,對大語言模型的 Planning 規(guī)劃的方案使用工具執(zhí)行(Action) ,并對執(zhí)行的過程進行觀測(Observation),保證任務的落地執(zhí)行。

Agent一詞起源于拉丁語中的Agere,意思是“to do”。在LLM語境下,Agent可以理解為在某種能自主理解、規(guī)劃決策、執(zhí)行復雜任務的智能體。

AI Agent是由人工智能驅(qū)動的程序,當給定目標時,它們能夠自己創(chuàng)建任務、完成任務、創(chuàng)建新任務、重新確定任務列表的優(yōu)先級、完成新的頂級任務,并循環(huán)直到達到目標。

Agent = LLM+Planning+Tool use+Feedback

Agent 是讓 LLM 具備目標實現(xiàn)的能力,并通過自我激勵循環(huán)來實現(xiàn)這個目標。

?

3.1 PDCA思維模型

PDCA思維模型大家應該都了解,我們可以把智能體執(zhí)行過程比作PDCA思維模型,我們可以將完成一項任務進行拆解,按照作出計劃、計劃實施、檢查實施效果,然后將成功的納入標準,不成功的留待下一循環(huán)去解決。目前,這是人們高效完成一項任務非常成功的經(jīng)驗總結(jié)。

wKgaomZrqNaAW3-qAALfor5Isjw414.png

3.2 智能體架構(gòu)

PDCA 循環(huán)是人日常做事思維模型,大模型是否可以像人一樣,讓大模型代替人的工作。因而,智能體應運而生,讓大模型具備執(zhí)行能力。

要讓LLM替代人去做事,我們可以基于PDCA模型進行規(guī)劃、執(zhí)行、評估和反思。

wKgZomZrqNeAc2T2AAGZG-2MFOM105.png

規(guī)劃能力(Plan):智能體(Agent)的大腦能夠?qū)碗s的大任務細分為小的、可操作的子任務,這種能力對于高效、有序地處理大型任務至關重要。

執(zhí)行能力(Do):智能體能學會在內(nèi)部知識不足時調(diào)用外部API,例如獲取實時信息、執(zhí)行代碼或訪問專有知識庫。這需要構(gòu)建一個平臺加工具的生態(tài)系統(tǒng),鼓勵其他廠商提供更多工具組件,共同形成繁榮的生態(tài)系統(tǒng)。

評估能力(Check):任務執(zhí)行后,智能體需要判斷結(jié)果是否達到預期目標,并在出現(xiàn)異常時進行分類、定位和原因分析。這種能力通常不是通用大模型所具備的,需要針對特定場景進行定制化的小模型訓練。

反思能力(Action):基于評估結(jié)果,智能體能夠及時結(jié)束任務或進行歸因分析,總結(jié)成功的關鍵因素。如果出現(xiàn)異?;蚪Y(jié)果不符合目標,智能體會提出應對策略,重新規(guī)劃并啟動新的循環(huán)過程,這是整個任務管理流程的核心部分。

?

下圖是智能體架構(gòu)典型的架構(gòu),在很多智能化介紹文檔都有引用。

?

wKgaomZrqNiAL8haAAFtN_jvzuQ016.png

?

LLM作為一種智能代理,引發(fā)了人們對人工智能與人類工作的關系和未來發(fā)展的思考。它讓我們思考人類如何與智能代理合作,從而實現(xiàn)更高效的工作方式。而這種合作方式也讓我們反思人類自身的價值和特長所在。

?

3.3 智能體開發(fā)框架

智能體是當前大模型最火熱的話題,如何快速開發(fā)智能體,智能體開發(fā)框架少不了。當下主流的智能體開發(fā)框架有Langchain,metaGPT。

1、Langchain

LangChain是一個用于開發(fā)由語言模型支持的應用程序的框架。它使應用程序能夠:

?感知上下文:將語言模型連接到上下文源(提示說明、小樣本示例、響應的內(nèi)容等)

?推理:依靠語言模型進行推理(關于如何根據(jù)提供的上下文進行回答、采取什么操作等)

wKgZomZrqNmAQrMPAASfLPeZF9Q562.png

?

LangChain框架有以下幾個核心組成部分:

?LangChain庫:PythonJavaScript庫。包含無數(shù)組件的接口和集成、將這些組件組合成鏈和Agent的基本運行時,以及鏈和Agent的現(xiàn)成實現(xiàn)。

?LangChain模板:一系列易于部署的參考架構(gòu),適用于各種任務。

?LangServe:用于將LangChain鏈部署為RESTAPI的庫。

?LangSmith:一個開發(fā)者平臺,可讓您調(diào)試、測試、評估和監(jiān)控基于任何LLM框架構(gòu)建的鏈,并與LangChain無縫集成。

?

2、MetaGPT

MetaGPT是一個創(chuàng)新框架,將人類工作流程作為元編程方法整合到基于LLM的多智能體協(xié)作中。它使用標準化操作程序(SOP)編碼為提示,要求模塊化輸出,以增強代理的領域?qū)I(yè)知識并減少錯誤。實驗表明,MetaGPT在協(xié)作軟件工程基準上生成了更連貫和正確的解決方案,展示了將人類知識整合進多智能體系統(tǒng)的潛力,為解決復雜問題提供了新機會。

在MetaGPT看來,可以將智能體想象成環(huán)境中的數(shù)字人,其中

智能體 = 大語言模型(LLM) + 觀察 + 思考 + 行動 + 記憶

wKgaomZrqNqAFEI2AAKnuAK2PVU874.png

?

這個公式概括了智能體的功能本質(zhì)。為了理解每個組成部分,讓我們將其與人類進行類比:

1.大語言模型(LLM):LLM作為智能體的“大腦”部分,使其能夠處理信息,從交互中學習,做出決策并執(zhí)行行動。

2.觀察:這是智能體的感知機制,使其能夠感知其環(huán)境。智能體可能會接收來自另一個智能體的文本消息、來自監(jiān)視攝像頭的視覺數(shù)據(jù)或來自客戶服務錄音的音頻等一系列信號。這些觀察構(gòu)成了所有后續(xù)行動的基礎。

3.思考:思考過程涉及分析觀察結(jié)果和記憶內(nèi)容并考慮可能的行動。這是智能體內(nèi)部的決策過程,其可能由LLM進行驅(qū)動。

4.行動:這些是智能體對其思考和觀察的顯式響應。行動可以是利用 LLM 生成代碼,或是手動預定義的操作,如閱讀本地文件。此外,智能體還可以執(zhí)行使用工具的操作,包括在互聯(lián)網(wǎng)上搜索天氣,使用計算器進行數(shù)學計算等。

5.記憶:智能體的記憶存儲過去的經(jīng)驗。這對學習至關重要,因為它允許智能體參考先前的結(jié)果并據(jù)此調(diào)整未來的行動。

四、向量數(shù)據(jù)庫

向量數(shù)據(jù)庫是專注于存儲和查詢向量的系統(tǒng),其向量源于文本、語音、圖像等數(shù)據(jù)的向量化表示。相較于傳統(tǒng)數(shù)據(jù)庫,向量數(shù)據(jù)庫更擅長處理非結(jié)構(gòu)化數(shù)據(jù),比如:文本、圖像和音頻。在機器學習深度學習中,數(shù)據(jù)通常以向量形式存在。向量數(shù)據(jù)庫憑借高效存儲、索引和搜索高維數(shù)據(jù)點的能力,在處理比如:數(shù)值特征、文本或圖像嵌入等復雜數(shù)據(jù)時表現(xiàn)出色。

wKgZomZrqNyAFi26AANaw_EbSyU199.png

?

GPT 彰顯了卓越的智能性能,其成功歸功于眾多要素,但在工程實現(xiàn)上,一個決定性的突破在于:神經(jīng)網(wǎng)絡與大型語言模型將語言問題轉(zhuǎn)化為數(shù)學問題,并以高效工程方法解決了這一數(shù)學挑戰(zhàn)。

在人工智能領域,知識與概念的內(nèi)在表示均采用數(shù)學向量。這個過程,即將詞匯、文本、語句、段落、圖片或音頻等對象轉(zhuǎn)換為數(shù)學向量,被稱為嵌入(Embedding)。

以 OpenAI 為例,它采用一個 1536 維的浮點數(shù)向量空間。當你向 ChatGPT 提出疑問時,輸入的文本首先被編碼并轉(zhuǎn)換成一個數(shù)學向量,隨后作為神經(jīng)網(wǎng)絡的輸入。神經(jīng)網(wǎng)絡產(chǎn)生的直接輸出也是一個向量,該向量隨后被解碼回人類的自然語言或其他形式,最終呈現(xiàn)給你。

?

wKgaomZrqN-AUipoAAFhydF95vY406.png

?

人工智能大模型的"思考"過程,本質(zhì)上是一系列涉及向量和矩陣的數(shù)學運算,包括加法、乘法以及它們的逆運算。這些運算對于人類來說非常抽象,難以直觀理解。然而,這種數(shù)學形式非常適合通過專用硬件如GPU(圖形處理單元)、FPGA(現(xiàn)場可編程門陣列)或ASIC(專用集成電路)來高效執(zhí)行,從而為AI提供了一個基于硅的仿生"大腦"。這個"大腦"擁有龐大的神經(jīng)元網(wǎng)絡、迅捷的處理速度、先進的學習算法,能夠展現(xiàn)出令人驚嘆的智能水平,并且具備快速自我復制和理論上的持久運行能力。

語言大模型處理的是編碼、運算到輸出的整個流程。但是,單純的計算并不足以支撐其智能行為,記憶同樣是關鍵組成部分。大型模型可以被看作是對人類公開數(shù)據(jù)集進行壓縮和存儲的一種形式,其中包含的豐富知識通過訓練過程被編碼進模型,體現(xiàn)在模型的權重參數(shù)中。為了實現(xiàn)更高精度、更長期、更過程化的大容量記憶存儲,就需要借助向量數(shù)據(jù)庫技術。這些數(shù)據(jù)庫專門設計來高效存儲和檢索高維向量,它們是大模型記憶功能的重要支撐,使得AI系統(tǒng)能夠更精準地回憶和利用已學習的知識。

五、知識圖譜

知識圖譜是一種以圖形式存儲和管理知識的數(shù)據(jù)庫,它基于實體和它們之間的關系來構(gòu)建。這種結(jié)構(gòu)化的數(shù)據(jù)庫設計用于高效地組織和呈現(xiàn)人類知識的各個方面。

知識圖譜通過語義分析抽取信息,建立實體之間的聯(lián)系,構(gòu)建出層次化的網(wǎng)絡結(jié)構(gòu)。在這個網(wǎng)絡中,實體如人物、地點、機構(gòu)等,不僅被賦予了特定的屬性,還通過各種關系與其他實體相連。通過先進的數(shù)據(jù)挖掘技術、信息處理方法和圖形化展示手段,知識圖譜能夠揭示知識領域的演變趨勢,為學術研究提供有力的數(shù)據(jù)支持。

知識圖譜在反欺詐領域應用廣泛,通過分析實體間關系網(wǎng)絡識別潛在欺詐行為。它整合多源數(shù)據(jù),實現(xiàn)多維度風險評估和異常檢測,提高預警準確性。知識圖譜的可視化分析助力快速識別欺詐模式,同時輔助制定和優(yōu)化反欺詐策略。此外,它還用于貸后管理和案件調(diào)查,提升金融風控效率和效果。隨著技術發(fā)展,知識圖譜在反欺詐中的作用日益凸顯。

wKgZomZrqOCAfLHnAAFBPY2NEYY625.png

?

?

知識圖譜與智能體(AI Agent)結(jié)合,提供了豐富的背景知識與實體關系,增強了智能體的決策和理解能力。這種結(jié)合使得智能體能夠執(zhí)行個性化服務、自動化任務、復雜問題解決等,同時提高了學習和適應能力。智能體通過知識圖譜進行上下文理解,實現(xiàn)精準的交互和響應,優(yōu)化了用戶體驗,并提升了服務效率和準確性。

六、微調(diào)(Fine-tuning)

6.1 什么是微調(diào)(Fine-tuning)

大模型微調(diào)是提升AI應用性能的有效手段,主要基于以下幾點考慮:

首先,大模型由于參數(shù)眾多,訓練成本極高,不適宜每家公司都從頭開始訓練。微調(diào)可以在現(xiàn)有模型基礎上進行,性價比更高。

其次,雖然Prompt Engineering是一種易于上手的大模型使用方式,但它存在明顯缺陷。大模型通常對輸入序列長度有限制,而Prompt Engineering可能導致輸入過長,增加推理成本,甚至因超長被截斷,影響輸出質(zhì)量。對企業(yè)而言,微調(diào)可以更有效地控制推理成本。

第三,當Prompt Engineering效果不佳,而企業(yè)又擁有高質(zhì)量的自有數(shù)據(jù)時,微調(diào)可以顯著提升模型在特定領域的性能。

第四,微調(diào)支持個性化服務。企業(yè)可以針對每個用戶的數(shù)據(jù)訓練輕量級的微調(diào)模型,提供定制化服務。

最后,數(shù)據(jù)安全也是微調(diào)的重要原因。對于不能共享給第三方的數(shù)據(jù),企業(yè)需要自行微調(diào)開源大模型,以滿足業(yè)務需求并保障數(shù)據(jù)安全。

綜上所述,大模型微調(diào)可以降低訓練成本,提升特定領域性能,支持個性化服務,并保障數(shù)據(jù)安全,是企業(yè)利用AI技術的重要策略。通過微調(diào),企業(yè)可以更高效、更安全地利用大模型,推動業(yè)務發(fā)展。

6.2 如何微調(diào)(Fine-tuning)

在參數(shù)規(guī)模上,大模型微調(diào)主要有兩種方法:全量微調(diào)(FFT)和參數(shù)高效微調(diào)(PEFT)。

FFT通過用特定數(shù)據(jù)訓練模型,將權重矩陣W調(diào)整為W',從而在相關領域提升性能。然而,F(xiàn)FT存在兩個主要問題:一是訓練成本高,因為微調(diào)的參數(shù)量與預訓練相同;二是災難性遺忘,即微調(diào)可能削弱模型在其他領域的表現(xiàn)。

PEFT旨在解決FFT的這些問題,是目前更流行的微調(diào)方法。從訓練數(shù)據(jù)來源和方法來看,PEFT包括幾種技術路線:

1.監(jiān)督式微調(diào)(SFT),使用人工標注數(shù)據(jù),通過監(jiān)督學習進行微調(diào)。

2.基于人類反饋的強化學習微調(diào)(RLHF),將人類反饋通過強化學習引入微調(diào),使模型輸出更符合人類期望。

3.基于AI反饋的強化學習微調(diào)(RLAIF),與RLHF類似,但反饋來自AI,以提高反饋系統(tǒng)的效率。

不同的微調(diào)方法側(cè)重點不同,實際操作中可以結(jié)合多種方案,以達到最佳效果。

七、Function Calling

ChatGPT引入了一個名為Function Calling的新功能,它允許用戶在API調(diào)用中向模型gpt-3.5-turbo-0613和gpt-4-0613描述函數(shù),并讓模型智能選擇輸出一個包含調(diào)用這些函數(shù)參數(shù)的JSON對象。不過,Chat completions API本身并不直接調(diào)用這些函數(shù),而是生成一個JSON,供用戶在自己的代碼中調(diào)用這些函數(shù)。

function calling從本質(zhì)上并不是嚴格的工具調(diào)用, 而是作為工具調(diào)用的前奏,它通過更加結(jié)構(gòu)化的方式指導LLM輸出,為在本地執(zhí)行具體函數(shù)提供了參數(shù),鋪平了道路。

以“股票價格查詢”為例,可以定義一個名為get_stock_price的函數(shù),該函數(shù)接收股票代碼作為參數(shù)。LLM根據(jù)用戶的問題,如“請查詢股票代碼為AAPL的價格”,識別出需要調(diào)用get_stock_price函數(shù),并從問題中提取出參數(shù)值“AAPL”。

開發(fā)者隨后可以根據(jù)這個JSON參數(shù),在后端用實際的代碼實現(xiàn)查詢股票價格的功能,并將查詢結(jié)果傳遞回LLM,最終由LLM將信息呈現(xiàn)給用戶。

ChatGLM3通過在模型輸入中嵌入函數(shù)描述的邏輯來實現(xiàn)工具調(diào)用,這涉及到對輸入的prompt進行一些調(diào)整,使得模型能夠識別和響應函數(shù)調(diào)用的需求。

總之,工具調(diào)用為LLM提供了調(diào)用外部工具的能力,擴展了其應用范圍,開發(fā)者可以定義各種功能的函數(shù),幫助LLM完成更復雜的任務。

八、AGI

AGI即通用人工智能(Artificial General Intelligence)。按照維基百科的定義,通用人工智能是具備與人類同等智能、或超越人類的人工智能,能表現(xiàn)正常人類所具有的所有智能行為。

AGI(通用人工智能)代表著人工智能發(fā)展的頂峰,旨在創(chuàng)造能夠理解并處理各類復雜任務的智能系統(tǒng),與人類智能相匹敵。在通往這一宏偉目標的征途上,一系列關鍵技術發(fā)揮著不可或缺的作用。

AI大模型通過其龐大的數(shù)據(jù)和模型參數(shù),為理解和生成語言提供了基礎。Prompt Engineering則通過精心設計的提示,引導AI模型產(chǎn)生準確的響應。Agent智能體技術賦予了AI自主行動和決策的能力,而知識庫和向量數(shù)據(jù)庫則為AI提供了豐富的信息資源和高效的數(shù)據(jù)檢索能力。

RAG(Retrieval-Augmented Generation)模型結(jié)合了檢索和生成,進一步提升了AI處理任務的靈活性和準確性。知識圖譜則通過結(jié)構(gòu)化的方式,將知識以圖的形式表示,增強了AI的推理和關聯(lián)能力。

這些技術相互配合,形成了一個多元化、高度協(xié)作的AI生態(tài)系統(tǒng)。它們共同推動著AI技術的持續(xù)進步,為實現(xiàn)AGI的終極目標打下了堅實的基礎。隨著技術的不斷發(fā)展和創(chuàng)新,我們離實現(xiàn)真正的通用人工智能的愿景越來越近。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • AI
    AI
    +關注

    關注

    88

    文章

    37038

    瀏覽量

    290088
  • 人工智能
    +關注

    關注

    1811

    文章

    49500

    瀏覽量

    258233
  • Agi
    Agi
    +關注

    關注

    0

    文章

    94

    瀏覽量

    10696
  • 大模型
    +關注

    關注

    2

    文章

    3350

    瀏覽量

    4720
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    2023北京智源大會亮點回顧 | 高性能計算、深度學習和大模型:打造通用人工智能AGI的金三角

    北京智源大會中黃鐵軍表示,“第一性原理”出發(fā),通過構(gòu)建一個完整的智能系統(tǒng)AGI,原子有機分子
    的頭像 發(fā)表于 06-15 14:16 ?1895次閱讀
    2023北京智源大會亮點回顧 | 高性能計算、深度學習和大<b class='flag-5'>模型</b>:打造<b class='flag-5'>通用人工智能</b><b class='flag-5'>AGI</b>的金三角

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內(nèi)外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產(chǎn)業(yè)博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能領域集產(chǎn)品
    發(fā)表于 08-22 15:00

    解讀人工智能的未來

    交通路線等等。而目前讓人們感到恐慌的實際上是另一種人工智能,它叫做AGI人工通用智能,它是一種像人類一樣聰明靈活的
    發(fā)表于 11-14 10:43

    什么是基于云計算的人工智能服務?

    如今,采用人工智能的企業(yè)遇到了一個主要障礙,那就是在內(nèi)部開發(fā)人工智能產(chǎn)品成本高昂,因此有了外包人工智能產(chǎn)品的需求。而對于從中小企業(yè)預算受限的大型企業(yè)來說,通過云計算來采
    發(fā)表于 09-11 11:51

    通用人工智能啥時候能實現(xiàn)

    通用人工智能啥時候能實現(xiàn)
    發(fā)表于 12-17 06:19

    AGI:走向通用人工智能的【生命學&哲學&科學】第一篇——生命、意識、五行、易經(jīng)、量子 精選資料分享

    AGI:走向通用人工智能的【生命學&哲學&科學】第一篇——生命、意識、五行、易經(jīng)、量子經(jīng)典的物理統(tǒng)一在原子上,量子的物理統(tǒng)一在量子上,化學統(tǒng)一在元素上,而生命統(tǒng)一在DNA上,DNA
    發(fā)表于 07-26 06:57

    人工智能芯片是人工智能發(fā)展的

    人工智能芯片是人工智能發(fā)展的 | 特倫斯謝諾夫斯基責編 | 屠敏本文內(nèi)容經(jīng)授權摘自《深度學習 智能時代的核心驅(qū)動力量》AlphaGo的人機對戰(zhàn),
    發(fā)表于 07-27 07:02

    人工智能基本概念機器學習算法

    目錄人工智能基本概念機器學習算法1. 決策樹2. KNN3. KMEANS4. SVM5. 線性回歸深度學習算法1. BP2. GANs3. CNN4. LSTM應用人工智能基本概念數(shù)據(jù)集:訓練集
    發(fā)表于 09-06 08:21

    【書籍評測活動NO.16】 通用人工智能:初心與未來

    ,以及當前“專用人工智能實現(xiàn)真正的“通用人工智能”還需要在哪些方面取得突破。書中對當前人工智能技術的發(fā)展路徑提出了不少質(zhì)疑,也給出了新
    發(fā)表于 06-21 14:41

    通用人工智能:初心與未來》-試讀報告

    作者給出的結(jié)論。整體讀下來,可以給我們關于通用人工智能全面的了解。作者也反復強調(diào)了通用人工智能與專用智能的區(qū)別。尤其是人們錯誤的認為一堆專用智能堆砌起來就是
    發(fā)表于 09-18 10:02

    什么是人類智能 楊學山淺談通用人工智能的發(fā)展途徑

    近日,在"第五屆中國行業(yè)互聯(lián)網(wǎng)大會"上,北京大學兼職教授、工信部原副部長楊學山發(fā)表了題為《走向通用人工智能》的演講。重點講述了通用人工智能AGI的歷史,闡釋了什么是人類智能,最后探討了
    的頭像 發(fā)表于 09-02 10:20 ?3304次閱讀

    通用人工智能是什么_通用人工智能四大基本問題

    AGI即Artificial general intelligence的簡寫 ,計算機科學與技術專業(yè)用語,專指通用人工智能。這一領域主要專注于研制像人一樣思考、像人一樣從事多種用途的機器。這一單詞
    的頭像 發(fā)表于 12-28 14:58 ?3.9w次閱讀

    專用和通用人工智能的區(qū)別

    隨著當今社會科學技術的持續(xù)發(fā)展,和人們對編程技術的發(fā)展,近年來AI產(chǎn)業(yè)正在飛速發(fā)展,并且當今社會也有越來越多的人工智能產(chǎn)業(yè)實踐,所以越來越多的人都開始關注人工智能方面,由此可見人工智能在當今社會中的熱度,今天就來講講專
    的頭像 發(fā)表于 12-28 15:03 ?5.2w次閱讀

    通用人工智能的多模態(tài)通用技術

    intelligence)期望機器能像人一樣思考、推理,能處理各種任務,比肩人類的智能水平(human-like or human-level intelligence)。與強人工智能相比,現(xiàn)有通用人工智能更加
    的頭像 發(fā)表于 02-04 10:44 ?6946次閱讀
    <b class='flag-5'>通用人工智能</b>的多模態(tài)<b class='flag-5'>通用</b>技術

    GPT-4只是AGI的火花?LLM終將退場,世界模型才是未來

    導讀人類距離AGI還有多遠?也許大語言模型不是最終答案,一個理解世界的模型才是未來的方向。在人類的認知之中,似乎早已習慣將通用人工智能AGI
    的頭像 發(fā)表于 08-18 08:30 ?796次閱讀
    GPT-4只是<b class='flag-5'>AGI</b>的火花?LLM終將退場,世界<b class='flag-5'>模型</b>才是未來