chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

等離子體電光調(diào)制器研究與應(yīng)用文獻(xiàn)

昊量光電 ? 來源:昊量光電 ? 作者:昊量光電 ? 2024-12-20 14:39 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群


等離子體電光調(diào)制器研究與應(yīng)用文獻(xiàn)

昊量光電新推出基于表面等離子體激元(SPP)和硅光子集成技術(shù)的高速等離子體電光調(diào)制器,高帶寬可達(dá)145GHz,可被廣泛用于通信,量子,測試測量等領(lǐng)域,不僅提供帶寬70GHz-145GHz的環(huán)形諧振調(diào)制器(RRM),馬赫增德爾調(diào)制器(MZM),同相正交調(diào)制器(IQM)封裝調(diào)制器模塊及芯片,還可以根據(jù)客戶需求提供定制化產(chǎn)品。以下是基于等離子體激元及硅光子封裝技術(shù)開發(fā)的高速等離子體電光調(diào)制器的相關(guān)研究論文及應(yīng)用文獻(xiàn)介紹。

1.帶寬超過100GHz,等離子體損耗減少的低溫環(huán)境下的等離子體調(diào)制器(Plasmonic Modulators in Cryogenic Environment Featuring Bandwidths in Excess of 100 GHz and Reduced Plasmonic Losses),D. Bisang, et al(ACS Photonics, 2024)

摘要:低溫量子應(yīng)用需要越來越多的互連和帶寬。預(yù)計(jì)光子鏈路將提供高帶寬、低熱負(fù)荷和低噪聲的數(shù)據(jù)傳輸,使下一代可擴(kuò)展量子計(jì)算系統(tǒng)成為可能。然而,它們需要在低溫下工作的高速和節(jié)能調(diào)制器來進(jìn)行電光信號(hào)轉(zhuǎn)換。在這里,等離子體有機(jī)電光調(diào)制器在4 K下工作,帶寬>100 GHz,驅(qū)動(dòng)電壓低至96 mV,與室溫相比,等離子體傳播損耗顯著降低40%以上。利用等離子體馬赫-曾德爾調(diào)制器和等離子體環(huán)形諧振器調(diào)制器分別在1528 nm和1285 nm處進(jìn)行了數(shù)據(jù)實(shí)驗(yàn),證明了低溫電光信號(hào)轉(zhuǎn)換速度可達(dá)160 Gbit/s和256 Gbit/s。這項(xiàng)工作表明,等離子調(diào)制器非常適合未來在低溫環(huán)境中高速、可擴(kuò)展和節(jié)能的光子互連。

2.用于未來RoF系統(tǒng)的全無源亞太赫茲對(duì)光接收機(jī)的等離子體片上天線(Plasmonic On-Chip Antenna Enabling Fully Passive sub-THz-to-optical receiver for Future RoF Systems),H. Ibili, et al (OFC, 2024)

摘要:我們演示了一種全無源片上天線集成等離子調(diào)制器接收器,內(nèi)置在235GHz左右的場增強(qiáng)為10,000,使射頻電子冗余。在無線亞太赫茲鏈路中傳輸高達(dá)80Gbit/s。

3.在1400米范圍內(nèi)實(shí)現(xiàn)160 Gbps直接亞太赫茲到光轉(zhuǎn)換的雙向帶接收器(Dual-Sideband Receiver Enabling 160 Gbps Direct subThz-to-optical Conversion over 1400 m),T. Blatter et al (OFC, 2024)

摘要:介紹了一種用于射頻鏈路的雙向帶接收方案,可提供高達(dá)3db的靈敏度改進(jìn),并測試了在226 GHz射頻下160 Gbps光纖網(wǎng)絡(luò)之間架橋1400 m的無線距離。

4.單載波網(wǎng)絡(luò)400 Gbit/s IM/DD超過400 m光纖實(shí)現(xiàn)等離子體馬赫-曾德調(diào)制器(Single carrier net 400 Gbit/s IM/DD over 400 m Fiber enabLED by Plasmonic Mach-Zehnder Modulator),L. Kulmer, et al(OFC, 2024)

摘要:我們利用等離子體MZM編碼的178GBd PAM8信號(hào)演示了437.1Gbit/s的IM/DD鏈路。符號(hào)速率高達(dá)256GBd,傳輸超過400m,同時(shí)保持凈速率>400Gbit/s已成功演示。

5.共振微波-光子協(xié)同設(shè)計(jì)的調(diào)制增強(qiáng)(modulation Enhancement Through Resonant Microwave-Photonic Co-Design),D. Moor, et al(ECOC, 2023)

摘要:傳統(tǒng)的光子學(xué)設(shè)計(jì)導(dǎo)致器件對(duì)環(huán)境和缺陷非常敏感,體積龐大,效率低下,因此禁止縮放。光子學(xué)逆設(shè)計(jì)可以產(chǎn)生比許多優(yōu)點(diǎn)的器件,完全兼容基于代工的制造,甚至可以實(shí)現(xiàn)光子學(xué)的新功能。示例包括片上和片對(duì)片光學(xué)互連中的無錯(cuò)誤傳輸,速度超過Tb/s,片上非線性光學(xué)隔離器,色散工程緊湊和高Q諧振器,可擴(kuò)展量子光子學(xué),甚至芯片上的激光驅(qū)動(dòng)粒子加速器。

6.未來高速度自由空間光通信的等離子調(diào)制器(Plasmonic Modulators for Future Highest-Speed Free Space optical communications),L. Kulmer, et al.(OFC, 2023)

摘要:等離子體調(diào)制器已被評(píng)估為在53公里踹流的自由空間光鏈路中高達(dá)200Gbaud的運(yùn)行。它們被證明能夠承受空間輻射和大溫度范圍,使其成為空間應(yīng)用的理想選擇。

7.片上系統(tǒng)光子集成電路在硅光子學(xué)和等離子體的作用(System-on-Chip Photonic Integrated Circuits in Silicon Photonics and the Role of plasmonics),C. Hoessbacher, et al. (OFC, 2023)

摘要:本文回顧了硅光子學(xué)上的光子集成電路。我們重點(diǎn)討論了光通信、傳感和量子技術(shù)應(yīng)用中的芯片上系統(tǒng),并概述了等離子體在硅光子學(xué)中的作用。

8.由相干調(diào)制和全自適應(yīng)光學(xué)實(shí)現(xiàn)的Tbit/s線速率衛(wèi)星饋線鏈路(Tbit/s line-rate satellite feeder links enabled by coherent modulation and full-adaptive optics),Y. Horst, et al. (Light: Science & Applications, 2023)

摘要:自由空間光通信技術(shù)是滿足未來星地網(wǎng)絡(luò)帶寬需求的一種解決方案。它們可以克服射頻瓶頸,僅用少數(shù)地面站就能達(dá)到Tbit/s的數(shù)據(jù)速率。在這里,我們展示了在瑞士阿爾卑斯山的少女峰山頂(3700米)和伯爾尼市附近的齊默爾瓦爾德天文臺(tái)(895米)之間53.42公里的自由空間信道上的單載波Tbit/s線速率傳輸,實(shí)現(xiàn)了高達(dá)0.94 Tbit/s的凈速率。在這種情況下,模擬了湍流條件下的衛(wèi)星-地面饋線連接。盡管條件不利,但通過采用全自適應(yīng)光學(xué)系統(tǒng)來糾正信道的畸變波前和使用偏振復(fù)用高階復(fù)雜調(diào)制格式,實(shí)現(xiàn)了高吞吐量。研究發(fā)現(xiàn),自適應(yīng)光學(xué)系統(tǒng)不會(huì)對(duì)相干調(diào)制格式的接收產(chǎn)生畸變。此外,我們還介紹了星座調(diào)制——一種新的四維BPSK (4D-BPSK)調(diào)制格式,作為在很低信噪比下傳輸高數(shù)據(jù)速率的技術(shù)。通過這種方式,我們展示了53公里FSO傳輸速率為13.3 Gbit/s和210 Gbit/s,每比特分別只有4.3和7.8光子,誤碼率為1?10-3。實(shí)驗(yàn)表明,相干調(diào)制編碼與全自適應(yīng)光濾波相結(jié)合是實(shí)現(xiàn)下一代Tbit/s衛(wèi)星通信實(shí)用化的有效手段。

9.反向納米聚焦波導(dǎo)中鉺的發(fā)射增強(qiáng)(Emission enhancement of erbium in a reverse nanofocusing waveguide),N. Güsken, et al. (Nature Communications, 2023)

摘要:自75年前珀塞爾發(fā)表開創(chuàng)性報(bào)告以來,電磁諧振器已被用于控制光-物質(zhì)相互作用,以制造更亮的輻射源,并對(duì)光和物質(zhì)的量子態(tài)進(jìn)行控制。事實(shí)上,光學(xué)諧振器如微腔和等離子體天線提供了很好的控制,但只能在有限的光譜范圍內(nèi)。通常需要相互調(diào)諧和匹配發(fā)射和諧振器頻率的策略,這是復(fù)雜的,并且排除了同時(shí)增強(qiáng)多個(gè)躍遷的可能性。在這封信中,我們報(bào)告了基于Purcell效應(yīng)的Er3+離子在單等離子體波導(dǎo)中穿越電信C波段的強(qiáng)輻射發(fā)射率增強(qiáng)。我們的間隙波導(dǎo)采用反向納米聚焦方法,有效地增強(qiáng)、提取和引導(dǎo)納米尺度的發(fā)射到光子波導(dǎo),同時(shí)保持等離子體損耗小。值得注意的是,大的寬帶Purcell增強(qiáng)使我們能夠解決斯塔克分裂電偶極子躍遷,這通常只在低溫條件下觀察到。多量子態(tài)同時(shí)輻射發(fā)射增強(qiáng)是光子量子網(wǎng)絡(luò)和片上數(shù)據(jù)通信的重要研究方向。

10.高帶寬、耐高溫的諧振等離子體微跑道調(diào)制器(Resonant plasmonic micro-racetrack modulators with high bandwidth and high temperature tolerance) ,M. Eppenberger, et al(Nature, 2023)

摘要:諧振調(diào)制器將電數(shù)據(jù)編碼到波長復(fù)用的光載波上。今天,硅微環(huán)調(diào)制器被認(rèn)為有希望實(shí)現(xiàn)這種鏈接;然而,它們提供的帶寬有限,并且需要熱穩(wěn)定系統(tǒng)。在這里,我們提出了等離子體微跑道調(diào)制器作為硅微環(huán)的潛在繼任者:它們同樣緊湊,與互補(bǔ)金屬氧化物半導(dǎo)體級(jí)驅(qū)動(dòng)電壓兼容,但提供176 GHz的電光帶寬,對(duì)工作溫度變化的穩(wěn)定性提高了28倍,并且沒有自熱效應(yīng)。這種耐溫度的有機(jī)電光材料可以在85°C的設(shè)備溫度下工作。我們展示了用單個(gè)諧振調(diào)制器以12.3fJ/bit的速度傳輸高達(dá)408 Gbps的強(qiáng)度調(diào)制傳輸。等離子體微跑道調(diào)制器提供了一種解決方案,以小的占地面積編碼高數(shù)據(jù)速率(例如,下一代通信鏈路設(shè)想的1.6 Tbps),具有低功耗和邊際(如果沒有)溫度控制。

11.基于硅光子學(xué)的雙驅(qū)動(dòng)等離子體-有機(jī)混合I/Q調(diào)制器產(chǎn)生和傳輸160 Gbaud QPSK相干信號(hào)(Generation and transmission of 160-Gbaud QPSK Coherent Signals using a Dual-Drive Plasmonic-Organic Hybrid I/Q modulator on Silicon Photonics),H. Mardoyan, et al(IEEE, 2022)

摘要:本文報(bào)道了基于等離子體技術(shù)的100Gbd以上信號(hào)的相干傳輸。利用硅光子學(xué)平臺(tái)上的雙驅(qū)動(dòng)等離子體-有機(jī)混合I/Q調(diào)制器,我們演示了160-GBaud QPSK和140-GBaud 16QAM調(diào)制的成功傳輸。

12.利用等離子體馬赫曾德調(diào)制器的超高凈比特率363 Gbit/s PAM-8和279 Gbit/s多二進(jìn)制光傳輸(Ultrahigh-Net-Bitrate 363 Gbit/s PAM-8 and 279 Gbit/s Polybinary Optical Transmission Using Plasmonic Mach-Zehnder Modulator),H. Qian, et al (Journal of Lightwave Technology, 2022)

摘要:我們總結(jié)了超寬帶等離子體馬赫-曾德爾調(diào)制器(MZM)在強(qiáng)度調(diào)制和直接檢測(IM/DD)系統(tǒng)中的實(shí)驗(yàn)探索,用于高達(dá)10公里的短距離光傳輸。我們研究了超高符號(hào)速率(高達(dá)304 GBd)的多電平光信號(hào)的調(diào)制、傳輸和接收,采用兩種不同的信號(hào)方案:脈沖幅度調(diào)制(PAM),具有多達(dá)8個(gè)幅度級(jí)和部分響應(yīng)編碼的二進(jìn)制(多二進(jìn)制)調(diào)制,存儲(chǔ)長度高達(dá)4。通過將性能映射到連接的軟判決(SD)和硬判決(HD)前向糾錯(cuò)(FEC)編碼方案,在10公里標(biāo)準(zhǔn)單模光纖傳輸后,PAM-8信令的凈比特率可達(dá)363.4 Gbit/s,四二進(jìn)制(多二進(jìn)制)信令的凈比特率可達(dá)279.0 Gbit/s。考慮到純高清編碼方案,PAM-6的凈比特率為318.0 Gbit/s,四二進(jìn)制的凈比特率為277.1 Gbit/s。

13.提高諧振跑道等離子體-有機(jī)混合調(diào)制器的穩(wěn)定性(Enhanced Stability of Resonant Racetrack Plasmonic-Organic-Hybrid Modulators),M. Eppenberger, et al(IEEE, 2022)

摘要:與基于等離子體色散效應(yīng)的諧振調(diào)制器相比,高速緊湊的等離子體有機(jī)跑道調(diào)制器在保持熱可調(diào)性的同時(shí),對(duì)工作條件變化的魯棒性要高幾個(gè)數(shù)量級(jí)。在80°C下穩(wěn)定運(yùn)行,無退化。

14.Tbit/s單通道53公里自由空間光傳輸——評(píng)估GEO衛(wèi)星光學(xué)饋線鏈路的可行性(Tbit/s Single Channel 53 km Free-Space Optical Transmission — Assessing the Feasibility of Optical GEO-Satellite Feeder Links),B. Bitachon, et al (Optica Publishing Group, 2022)

摘要:演示了1 Tbps 53km單通道自由空間光(FSO)鏈路。采用了高帶寬、高階調(diào)制格式和先jin的自適應(yīng)光學(xué)技術(shù)。我們表明,非線性香農(nóng)極限的缺失與自適應(yīng)光學(xué)相結(jié)合,可以以低鏈路故障記錄數(shù)據(jù)傳輸。

15.等離子體光子晶體——微米尺度上的太比特調(diào)制(Plasmonic PICs — Terabit Modulation on the Micrometer Scale) ,W. Heni, et al (ECOC, 2022)

摘要:等離子體PICs提供緊湊的高速光子和等離子體元件,實(shí)現(xiàn)新一代可擴(kuò)展的光子系統(tǒng)解決方案。我們解釋底層技術(shù),重點(diǎn)介紹關(guān)鍵應(yīng)用,回顧技術(shù)演示,并討論未來的機(jī)會(huì)。

16.>500 GHz帶寬石墨烯光電探測器實(shí)現(xiàn)高容量等離子體到等離子體鏈路(>500 GHz Bandwidth Graphene Photodetector Enabling Highest-Capacity Plasmonic-to-Plasmonic Links),S. K?pfli, et al(ECOC, 2022)

摘要:介紹了一種新型垂直入射超材料增強(qiáng)石墨烯光電探測器,其光譜窗口為200nm,設(shè)置限制帶寬為500GHz。光電探測器已經(jīng)在提供的250 GHz帶寬的全等離子體EOE鏈路中進(jìn)行了數(shù)據(jù)傳輸測試。

17.低溫應(yīng)用的等離子體100 GHz電光調(diào)制器(Plasmonic 100-GHz Electro-Optic Modulators for Cryogenic Applications),P. Habegger, et al(ECOC, 2022)

摘要:我們展示了一種節(jié)能的100 GHz等離子體調(diào)制器,工作在4 K,在0.1 V的超低驅(qū)動(dòng)電壓下實(shí)現(xiàn)超過128 GBd的數(shù)據(jù)調(diào)制。低溫下的高速元件是可擴(kuò)展的下一代量子計(jì)算系統(tǒng)的重要組成部分。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 等離子體
    +關(guān)注

    關(guān)注

    0

    文章

    138

    瀏覽量

    15056
  • 電光調(diào)制器
    +關(guān)注

    關(guān)注

    0

    文章

    24

    瀏覽量

    6767
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    探索微觀世界的“神奇火焰”:射頻等離子體技術(shù)淺談

    你是否想象過,有一種特殊的“火焰”,它并不灼熱,卻能瞬間讓材料表面煥然一新;它不產(chǎn)生煙霧,卻能精密地雕刻納米級(jí)的芯片電路?這種神奇的“火焰”,就是今天我們要介紹的主角——射頻等離子體(RF Plasma)。
    的頭像 發(fā)表于 10-24 18:03 ?1051次閱讀

    高端芯片制造裝備的“中國方案”:等離子體相似定律與尺度網(wǎng)絡(luò)突破

    等離子體“尺度網(wǎng)絡(luò)”模型。該研究利用國產(chǎn)逐光IsCMOS相機(jī)(TRC411-H20-U)的超高時(shí)空分辨率,成功捕捉納米秒級(jí)等離子體動(dòng)態(tài),為半導(dǎo)體核心工藝設(shè)備(等離子體蝕刻與沉積)從實(shí)驗(yàn)
    的頭像 發(fā)表于 07-29 15:58 ?459次閱讀
    高端芯片制造裝備的“中國方案”:<b class='flag-5'>等離子體</b>相似定律與尺度網(wǎng)絡(luò)突破

    電壓放大器在電光調(diào)制中的應(yīng)用

    信號(hào),驅(qū)動(dòng)電光調(diào)制器實(shí)現(xiàn)高效的光信號(hào)調(diào)制。 圖:電壓放大器基于PMN-PT透明陶瓷在電光調(diào)制研究
    的頭像 發(fā)表于 07-10 13:58 ?371次閱讀
    電壓放大器在<b class='flag-5'>電光</b><b class='flag-5'>調(diào)制</b>中的應(yīng)用

    遠(yuǎn)程等離子體刻蝕技術(shù)介紹

    遠(yuǎn)程等離子體刻蝕技術(shù)通過非接觸式能量傳遞實(shí)現(xiàn)材料加工,其中熱輔助離子束刻蝕(TAIBE)作為前沿技術(shù),尤其適用于碳氟化合物(FC)材料(如聚四氟乙烯PTFE)的精密處理。
    的頭像 發(fā)表于 06-30 14:34 ?977次閱讀
    遠(yuǎn)程<b class='flag-5'>等離子體</b>刻蝕技術(shù)介紹

    安泰高壓放大器在等離子體發(fā)生裝置研究中的應(yīng)用

    :ATA-67100高壓放大器在介質(zhì)阻擋放電等離子體激勵(lì)中的應(yīng)用 一、高壓放大器在等離子體發(fā)生裝置中的作用 (一)驅(qū)動(dòng)和維持等離子體放電 等離子體
    的頭像 發(fā)表于 06-24 17:59 ?403次閱讀
    安泰高壓放大器在<b class='flag-5'>等離子體</b>發(fā)生裝置<b class='flag-5'>研究</b>中的應(yīng)用

    上海光機(jī)所在多等離子體通道中實(shí)現(xiàn)可控Betatron輻射

    圖1. 等離子體多通道Betatron振蕩產(chǎn)生的示意圖 近期,中國科學(xué)院上海光學(xué)精密機(jī)械研究所超強(qiáng)激光科學(xué)與技術(shù)全國重點(diǎn)實(shí)驗(yàn)室研究團(tuán)隊(duì)提出了一種基于雙激光脈沖干涉的新型高亮度X射線源產(chǎn)生方案。該團(tuán)
    的頭像 發(fā)表于 06-12 07:45 ?316次閱讀
    上海光機(jī)所在多<b class='flag-5'>等離子體</b>通道中實(shí)現(xiàn)可控Betatron輻射

    安泰功率放大器在電光調(diào)制器中的應(yīng)用有哪些

    電光調(diào)制器是一種利用電場對(duì)光傳輸進(jìn)行調(diào)制的器件。當(dāng)電場施加到光學(xué)材料上時(shí),會(huì)導(dǎo)致折射率發(fā)生變化,從而改變光的相位或強(qiáng)度。因此,電光調(diào)制器可以
    的頭像 發(fā)表于 04-17 11:22 ?529次閱讀
    安泰功率放大器在<b class='flag-5'>電光</b><b class='flag-5'>調(diào)制器</b>中的應(yīng)用有哪些

    通快霍廷格電子攜前沿等離子體電源解決方案亮相SEMICON China 2025

    通快霍廷格電子等離子體射頻及直流電源為晶圓制造的沉積、刻蝕和離子注入等關(guān)鍵工藝提供精度、質(zhì)量和效率的有力保障。 立足百年電源研發(fā)經(jīng)驗(yàn),通快霍廷格電子將持續(xù)通過創(chuàng)新等離子體電源解決方案,助力半導(dǎo)體產(chǎn)業(yè)
    發(fā)表于 03-24 09:12 ?539次閱讀
    通快霍廷格電子攜前沿<b class='flag-5'>等離子體</b>電源解決方案亮相SEMICON China 2025

    等離子體光譜儀(ICP-OES):原理與多領(lǐng)域應(yīng)用剖析

    等離子體光譜儀(ICP-OES)憑借其高靈敏度、高分辨率以及能夠同時(shí)測定多種元素的顯著特點(diǎn),在眾多領(lǐng)域發(fā)揮著關(guān)鍵作用。它以電感耦合等離子體(ICP)作為激發(fā)源,將樣品原子化、電離并激發(fā)至高能級(jí),隨后
    的頭像 發(fā)表于 03-12 13:43 ?3036次閱讀
    <b class='flag-5'>等離子體</b>光譜儀(ICP-OES):原理與多領(lǐng)域應(yīng)用剖析

    等離子體蝕刻工藝對(duì)集成電路可靠性的影響

    隨著集成電路特征尺寸的縮小,工藝窗口變小,可靠性成為更難兼顧的因素,設(shè)計(jì)上的改善對(duì)于優(yōu)化可靠性至關(guān)重要。本文介紹了等離子刻蝕對(duì)高能量電子和空穴注入柵氧化層、負(fù)偏壓溫度不穩(wěn)定性、等離子體誘發(fā)損傷、應(yīng)力遷移等問題的影響,從而影響集成電路可靠性。
    的頭像 發(fā)表于 03-01 15:58 ?1388次閱讀
    <b class='flag-5'>等離子體</b>蝕刻工藝對(duì)集成電路可靠性的影響

    等離子體的一些基礎(chǔ)知識(shí)

    等離子體(Plasma)是一種電離氣體,通過向氣體提供足夠的能量,使電子從原子或分子中掙脫束縛、釋放出來,成為自由電子而獲得,通常含有自由和隨機(jī)移動(dòng)的帶電粒子(如電子、離子)和未電離的中性粒子。由于
    的頭像 發(fā)表于 01-20 10:07 ?8074次閱讀
    <b class='flag-5'>等離子體</b>的一些基礎(chǔ)知識(shí)

    電光調(diào)制器迎來新突破,PZT薄膜材料助力AI通信需求

    近日,相關(guān)團(tuán)隊(duì)研發(fā)出了一種基于鋯鈦酸鉛(PZT)薄膜的超小型電光調(diào)制器。該調(diào)制器憑借PZT材料的優(yōu)異性能,實(shí)現(xiàn)了高調(diào)諧效率和高速率,為片間信息傳遞提供了新思路。相關(guān)成果已發(fā)表于《ACS
    的頭像 發(fā)表于 01-17 11:23 ?2790次閱讀
    <b class='flag-5'>電光</b><b class='flag-5'>調(diào)制器</b>迎來新突破,PZT薄膜材料助力AI通信需求

    OptiFDTD應(yīng)用:納米盤型諧振腔等離子體波導(dǎo)濾波

    幾何諧振腔[3]以及環(huán)形諧振腔[4]。 ?MIM波導(dǎo)中,有兩種等離子體濾波,即帶通和帶阻濾波。 2D FDTD模擬 ?選擇TM偏振波激發(fā)SPPs ?應(yīng)用正弦調(diào)制高斯脈沖光來模擬感
    發(fā)表于 01-09 08:52

    等離子的基本屬性_等離子體如何發(fā)生

    射頻等離子體(RF等離子體)是在氣流中通過外部施加的射頻場形成的。當(dāng)氣體中的原子被電離時(shí)(即電子在高能條件下與原子核分離時(shí)),就會(huì)產(chǎn)生等離子體。這種電離過程可以通過各種方法實(shí)現(xiàn),包括熱、電和電磁
    的頭像 發(fā)表于 01-03 09:14 ?2357次閱讀
    <b class='flag-5'>等離子</b>的基本屬性_<b class='flag-5'>等離子體</b>如何發(fā)生

    100GHz等離子體電光調(diào)制器在低溫領(lǐng)域的應(yīng)用

    我們展示了一種高能效的100GHz等離子體調(diào)制器,在4K下運(yùn)行,用于超過128 GBd/s的數(shù)據(jù)調(diào)制,并且具有超低的驅(qū)動(dòng)電壓0.1 V。在低溫下的高速組件是可擴(kuò)展的下一代量子計(jì)算系統(tǒng)的基本構(gòu)建模塊。
    的頭像 發(fā)表于 12-20 14:35 ?1184次閱讀
    100GHz<b class='flag-5'>等離子體</b><b class='flag-5'>電光</b><b class='flag-5'>調(diào)制器</b>在低溫領(lǐng)域的應(yīng)用