chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于毫米波雷達(dá)和機(jī)器視覺(jué)的夜間前方車輛檢測(cè)方案

電子工程師 ? 2018-03-31 09:23 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

為研究夜間追尾事故中本車智能防撞預(yù)警方法,本文提出了一種基于毫米波雷達(dá)機(jī)器視覺(jué)的前方車輛檢測(cè)方法。利用多傳感器融合數(shù)據(jù),檢測(cè)前方車輛的距離、速度等。建立傳感器之間轉(zhuǎn)換關(guān)系,轉(zhuǎn)換雷達(dá)目標(biāo)的世界坐標(biāo)到圖像坐標(biāo)。

在圖像上形成感興趣區(qū)域,利用圖像處理方法減少干擾點(diǎn),運(yùn)用 Dempster-Shafer(D-S)證據(jù)理論,融合特征信息,得到總的信任度值檢驗(yàn)感興趣區(qū)域內(nèi)的車輛。實(shí)驗(yàn)采集多段夜間道路行車視頻數(shù)據(jù),統(tǒng)計(jì)實(shí)現(xiàn)尾燈識(shí)別的幀數(shù),與主觀判斷進(jìn)行比較。結(jié)果表明:該方法能夠?qū)崿F(xiàn)對(duì)夜間前方車輛的檢測(cè)和定位。

本文來(lái)自 2016 年 6 月 15 日出版的《 汽車安全與節(jié)能學(xué)報(bào) 》,作者是吉林大學(xué)交通學(xué)院的金立生教授和程蕾以及清華大學(xué)汽車安全與節(jié)能國(guó)家重點(diǎn)實(shí)驗(yàn)室的成波教授。

道路交通事故中由追尾相撞導(dǎo)致的事故占很大比例,而夜間交通事故尤為嚴(yán)重,約占交通事故總數(shù)的 40%。夜間車輛檢測(cè)技術(shù)已成為智能車輛安全輔助駕駛系統(tǒng)的重要組成部分,用于準(zhǔn)確地識(shí)別夜間前方車輛,為駕駛員及時(shí)提供前方車輛信息及路況,降低夜間交通事故的發(fā)生 [1]。

夜間由于光線強(qiáng)度不夠,大部分白天的車輛特征信息已經(jīng)不可用,因此用于白天的車輛檢測(cè)算法基本失效。車輛尾燈是夜間車輛的明顯特征,目前,對(duì)于夜間前方車輛檢測(cè)識(shí)別的研究主要是利用單目視覺(jué)傳感器,獲取車輛前方的視覺(jué)感知信息,基于圖像信息提取尾燈特征進(jìn)行前方車輛識(shí)別。

劉尊洋等人結(jié)合車輛尾燈的顏色與亮度檢測(cè)尾燈 [2];吳海濤等人對(duì)前車燈對(duì)配對(duì)進(jìn)行車輛的跟蹤 [3];唐佳林等人采用幀差法提取感興趣區(qū)域 [4];王孝蘭選擇基于模糊理論的分割方法對(duì)圖像進(jìn)行分割,提取車牌、尾燈的特征 [5];祁秋紅等人通過(guò)色調(diào)(hue)-飽和度(saturation)-明度(value)的顏色模型(HSV)對(duì)尾燈的顏色信息進(jìn)行分割,辨出車輛位置[6];周俊杰采用基于R通道直方圖的紅(red)-綠(green)-藍(lán)(blue)彩色(RGB)空間自適應(yīng)閾值分割圖像,自適應(yīng)效果不是很理想 [7]。

機(jī)器視覺(jué)是一種用于車輛檢測(cè)的有效傳感器,但其有一定的局限性,因此有文獻(xiàn)提出綜合考慮激光雷達(dá)和機(jī)器視覺(jué)的信息,進(jìn)行前方目標(biāo)車輛檢測(cè) [8-9]。雖然激光雷達(dá)和機(jī)器視覺(jué)在一定程度可以互補(bǔ),但激光雷達(dá)對(duì)天氣、燈光、障礙物表面光滑度等干擾非常敏感,不適合復(fù)雜道路環(huán)境。

由于毫米波雷達(dá)不易受外界干擾而且測(cè)量的距離精度高,可以準(zhǔn)確獲得前方車輛的速度、角度等深度信息。因此,本文提出利用毫米波雷達(dá)和機(jī)器視覺(jué)進(jìn)行多傳感器數(shù)據(jù)融合,通過(guò)先驗(yàn)知識(shí)篩選毫米波雷達(dá)探測(cè)到的障礙物數(shù)據(jù),融合雷達(dá)數(shù)據(jù)和圖像信息初步確立動(dòng)態(tài)感興趣區(qū)域(Region of Interest,ROI),在縮小的范圍內(nèi)基于視覺(jué)傳感器提取表征車輛的特征,運(yùn)用 D-S 證據(jù)理論(Dempster-Shafer Evidential Theory)融合信息,減少了計(jì)算量和主觀閾值對(duì)檢測(cè)精確度的影響,提高了執(zhí)行速度和車輛定位的準(zhǔn)確性。

1. 夜間車輛檢測(cè)算法實(shí)現(xiàn)

整個(gè)過(guò)程分為假設(shè)產(chǎn)生(Hypothesis Generation,HG)和假設(shè)檢驗(yàn)(Hypothesis Verifcation,HV)兩部分:

假設(shè)產(chǎn)生過(guò)程利用雷達(dá)獲取候選目標(biāo)的的距離、角度、速度等信息,進(jìn)而得到候選目標(biāo)的世界坐標(biāo),逆用攝像機(jī)標(biāo)定原理得到世界坐標(biāo)與圖像像素坐標(biāo)的轉(zhuǎn)換關(guān)系,初步確定候選目標(biāo)在圖像上的區(qū)域,即感興趣區(qū)域 ROI;

假設(shè)驗(yàn)證過(guò)程是通過(guò)改進(jìn)的自適應(yīng)閾值確定方法(大津法,OTSU 法)進(jìn)行圖像分割處理,進(jìn)而利用圖像處理方法、先驗(yàn)知識(shí)和 D-S 證據(jù)理論對(duì)感興趣區(qū)域檢測(cè)是否存在車輛特征。

圖 1 夜間前方車輛檢測(cè)方法流程圖

算法流程圖如圖 1 所示。

2. 假設(shè)產(chǎn)生(HG)

2.1 雷達(dá)數(shù)據(jù)處理及初選目標(biāo)的確定

毫米波雷達(dá)接收到的是十六進(jìn)制數(shù)據(jù),根據(jù)雷達(dá)協(xié)議解算數(shù)據(jù),并提取可以用于車輛檢測(cè)的有效信息包括:前方車輛相對(duì)于本車的角度、距離、速度、反射強(qiáng)度。在實(shí)際測(cè)量中,毫米波雷達(dá)獲取的信號(hào)有一部分是空目標(biāo)信號(hào)、無(wú)效目標(biāo)信號(hào)、靜止目標(biāo)信號(hào),首先要去除這 3 種目標(biāo)信號(hào)的干擾。

根據(jù)國(guó)家規(guī)定車道寬度設(shè)置橫向?qū)挾乳撝?,進(jìn)行目標(biāo)與自車的同車道判斷,保留行駛方向距離閾值和相對(duì)速度閾值內(nèi)的目標(biāo),對(duì)篩選出的前方目標(biāo)由近及遠(yuǎn)的原則重新排序,使用同車道近距離原則初選有效目標(biāo),如表 1 所示。

表 1 初選有效目標(biāo)信號(hào)

表 1 中:ID 表示雷達(dá)檢測(cè)得到的目標(biāo)信號(hào)的標(biāo)準(zhǔn)幀號(hào);α、R、Δv 分別為本車與目標(biāo)信號(hào)的相對(duì)角度、相對(duì)距離、相對(duì)速度(?v = v1 - v0,v1 為目標(biāo)速度,v0 為本車速度);p 從目標(biāo)返回信號(hào)的強(qiáng)度,即反射率。

長(zhǎng)距離的毫米波雷達(dá)掃描范圍是 1~175 m,中距離是 1~60 m。距離小于 1 m 時(shí)雷達(dá)就不能識(shí)別物體。以避免車輛行駛過(guò)程中與前方車輛發(fā)生追尾碰撞為出發(fā)點(diǎn),在有效目標(biāo)選擇過(guò)程中最關(guān)注的是與本車位于同一車道的前方最近車輛。當(dāng) Δv<0,有出現(xiàn)追尾事故的可能。因此,把雷達(dá)掃描近距離 1~60 m 內(nèi)、離本車最近且 Δv<0 的車輛作為初選目標(biāo)。

2.2 雷達(dá)數(shù)據(jù)和機(jī)器視覺(jué)的融合

雷達(dá)和機(jī)器視覺(jué)是不同坐標(biāo)系的傳感器,因此要實(shí)現(xiàn)雷達(dá)和機(jī)器視覺(jué)的空間融合,必須建立兩傳感器所在坐標(biāo)系的轉(zhuǎn)換模型,即雷達(dá)坐標(biāo)與圖像像素坐標(biāo)之間的轉(zhuǎn)換。雷達(dá)坐標(biāo)系與圖像像素坐標(biāo)系之間有著密切的聯(lián)系 [10],按照右手系原則建立坐標(biāo)系,由式 (1)-(2) 確定坐標(biāo)系之間的空間位置關(guān)系。

將世界坐標(biāo)系中的點(diǎn) ( XW, YW, ZW ) 變換到圖像像素坐標(biāo) ( u, v ),轉(zhuǎn)換公式為:

式中:( XW, YW, ZW, 1 )^T 是點(diǎn)的世界坐標(biāo),與其對(duì)應(yīng)的攝像機(jī)齊次坐標(biāo)是 ( XC, YC, ZC, 1 )^T,dx 與 dy 分別表示每個(gè)像素在橫、縱軸上的物理單位下的大小,f 是攝像機(jī)的焦距,s' 表示因攝像機(jī)成像平面坐標(biāo)軸相互不正交引出的傾斜因子(Skew Factor),R 代表旋轉(zhuǎn)矩陣(為一個(gè) 3×3 的正交單位矩陣),t 代表平移向量,I 是元素全為 1 的對(duì)角矩陣,O=(0, 0, 0)^T。

毫米波雷達(dá)獲取的前方障礙物信息是在極坐標(biāo)下的二維信息,將障礙物 P 的極坐標(biāo)下的二維信息轉(zhuǎn)換到直角坐標(biāo)系中,雷達(dá)坐標(biāo)系的 X0O0Z0 平面與世界坐標(biāo)系的 XOZ 平面平行,兩平面之間的距離為 Y0,通過(guò)雷達(dá)可以得到前方車輛中心點(diǎn)投影到雷達(dá)掃射平面內(nèi)的點(diǎn) P 相對(duì)雷達(dá)的距離 R 和角度 α,確定點(diǎn) P 在世界坐標(biāo)系下的坐標(biāo),轉(zhuǎn)換關(guān)系如下:

由雷達(dá)獲得前方車輛形心點(diǎn)的輸入,綜合以上建立雷達(dá)坐標(biāo)系和圖像像素坐標(biāo)系之間的相對(duì)關(guān)系,即可獲得前方車輛在像素平面的投影,基于車輛的常用外形(寬高比)投影在像素平面上,建立可以根據(jù)距離變化的動(dòng)態(tài)感興趣區(qū)域,縮小在圖像上的搜索時(shí)間,減少計(jì)算量。通過(guò)統(tǒng)計(jì)發(fā)現(xiàn)一般車輛的寬高比在 0.7~2.0 范圍內(nèi),常見(jiàn)轎車、運(yùn)動(dòng)型多功能車(Sport Utility Vehicle,SUV)、面包車、商用車輛等車型的寬高比在 0.7~1.3 范圍內(nèi) [11],為了避免后續(xù)尾燈檢測(cè)時(shí)會(huì)遺漏尾燈目標(biāo),本文選取常見(jiàn)幾種車型的最大寬高比 W/H=1.3。

動(dòng)態(tài)感興趣區(qū)域的確定如下:

式中:( x_lt, y_lt ),( x_rb, y_rb )分別為動(dòng)態(tài)感興趣矩形區(qū)域的左上角點(diǎn)和右下角點(diǎn)的像素坐標(biāo),( x, y )為車輛形心點(diǎn)的像素坐標(biāo)。

圖 2 雷達(dá)掃描圖

圖 3 雷達(dá)目標(biāo)在圖像上的的 ROI

雷達(dá)掃描圖如圖 2 所示。雷達(dá)坐標(biāo)系中的目標(biāo)經(jīng)坐標(biāo)轉(zhuǎn)換關(guān)系在圖像上形成的感興趣區(qū)域如圖 3 中的 (a) 列所示。動(dòng)態(tài)感興趣區(qū)域的大小會(huì)隨目標(biāo)的距離發(fā)生變化,以更適合的尺寸截取感興趣區(qū)域圖像進(jìn)行下一步檢測(cè)驗(yàn)證,縮小了檢測(cè)范圍,從而減少計(jì)算量提高檢測(cè)實(shí)時(shí)性。獲取的感興趣區(qū)域圖像如圖 3b 列所示。

3. 假設(shè)驗(yàn)證(HV)

3.1 圖像分割

前方車輛尾燈對(duì)的灰度級(jí)與路面及背景的灰度級(jí)有明顯區(qū)別,采用閾值分割的方法可以快速準(zhǔn)確地將尾燈對(duì)分割出來(lái)。

本文采用改進(jìn)的 OTSU 算法分割圖像,凸顯出表征車輛特征的尾燈部分。改進(jìn)的 OTSU 算法是以傳統(tǒng) OTSU 為基礎(chǔ),從最小灰度值到最大灰度值遍歷,當(dāng)灰度 T 使得方差 σ^2 = w_0*w_1*(μ_0-μ_1)^2 最大時(shí),再次利用傳統(tǒng) OTSU 對(duì)圖像中大于 T 的部分從灰度 T 到最大灰度值遍歷,得到閾值 T0 使大于灰度值 T 的部分的方差最大,提取閾值 T0,用 T0 對(duì)感興趣區(qū)域圖像進(jìn)行二值化分割,目標(biāo)灰度為 1,背景灰度為 0。

圖 4 分割后圖像

分割后的圖像如圖 4 所示。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器視覺(jué)
    +關(guān)注

    關(guān)注

    164

    文章

    4774

    瀏覽量

    125609
  • 雷達(dá)
    +關(guān)注

    關(guān)注

    51

    文章

    3299

    瀏覽量

    123324
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    毫米波雷達(dá)氣密性檢測(cè)

    選對(duì)氣密性檢測(cè)儀,是保障毫米波雷達(dá)質(zhì)量的關(guān)鍵環(huán)節(jié)。毫米波雷達(dá)因其結(jié)構(gòu)精密、泄漏標(biāo)準(zhǔn)嚴(yán)苛,傳統(tǒng)檢測(cè)
    的頭像 發(fā)表于 12-18 14:28 ?229次閱讀
    <b class='flag-5'>毫米波</b><b class='flag-5'>雷達(dá)</b>氣密性<b class='flag-5'>檢測(cè)</b>儀

    微波雷達(dá)毫米波雷達(dá)有什么區(qū)別

    微波雷達(dá)毫米波雷達(dá)有什么區(qū)別 前言:不知道大家有沒(méi)有發(fā)現(xiàn),各種雷達(dá)模塊的使用開(kāi)始逐漸加入各種智能家居產(chǎn)品了,像人來(lái)燈亮,人走燈滅這種雷達(dá)
    的頭像 發(fā)表于 10-30 16:56 ?1854次閱讀
    微波<b class='flag-5'>雷達(dá)</b>和<b class='flag-5'>毫米波</b><b class='flag-5'>雷達(dá)</b>有什么區(qū)別

    全國(guó)產(chǎn)化毫米波雷達(dá)模組技術(shù)解析及智能感知應(yīng)用方案指南

    一、市場(chǎng)分析與行業(yè)趨勢(shì) 1.1 毫米波雷達(dá)市場(chǎng)前景 隨著智能家居、安防監(jiān)控、智慧照明等領(lǐng)域的快速發(fā)展,毫米波雷達(dá)作為非接觸式感知技術(shù)正迎來(lái)爆發(fā)式增長(zhǎng)。2023年全球
    的頭像 發(fā)表于 10-24 11:25 ?386次閱讀

    恩智浦如何釋放毫米波雷達(dá)的技術(shù)潛力

    在智能出行變革浪潮中,毫米波雷達(dá)正成為汽車感知系統(tǒng)的核心支柱。展望未來(lái),下一代毫米波雷達(dá)將如何演進(jìn)并賦能哪些創(chuàng)新應(yīng)用?這無(wú)疑是開(kāi)發(fā)者關(guān)心的話題。
    的頭像 發(fā)表于 08-19 14:25 ?1534次閱讀

    毫米波雷達(dá)重塑煤礦感知能力

    毫米波雷達(dá)在煤礦行業(yè)展現(xiàn)出巨大的應(yīng)用潛力。隨著技術(shù)的不斷成熟、成本的下降以及針對(duì)煤礦特殊環(huán)境的優(yōu)化,毫米波雷達(dá)將為提升煤礦安全生產(chǎn)水平和智能化程度提供強(qiáng)有力的支持。
    的頭像 發(fā)表于 08-14 13:50 ?519次閱讀
    <b class='flag-5'>毫米波</b><b class='flag-5'>雷達(dá)</b>重塑煤礦感知能力

    一文帶你了解海凌科毫米波雷達(dá)

    什么是毫米波雷達(dá)?毫米波雷達(dá)有什么特點(diǎn)?毫米波雷達(dá)有什么作用?海凌科有哪些系列
    的頭像 發(fā)表于 08-11 12:04 ?1695次閱讀
    一文帶你了解海凌科<b class='flag-5'>毫米波</b><b class='flag-5'>雷達(dá)</b>

    泰克示波器TBS1102C在毫米波雷達(dá)研發(fā)中的關(guān)鍵測(cè)試方案

    的觸發(fā)模式與高級(jí)分析功能,成為毫米波雷達(dá)研發(fā)團(tuán)隊(duì)不可或缺的工具。本文將深入探討TBS1102C在毫米波雷達(dá)研發(fā)中的關(guān)鍵測(cè)試方案,助力工程師高
    的頭像 發(fā)表于 07-02 14:22 ?464次閱讀
    泰克示波器TBS1102C在<b class='flag-5'>毫米波</b><b class='flag-5'>雷達(dá)</b>研發(fā)中的關(guān)鍵測(cè)試<b class='flag-5'>方案</b>

    自動(dòng)駕駛毫米波雷達(dá)之間會(huì)相互干擾嗎?

    等優(yōu)點(diǎn),被廣泛應(yīng)用于自動(dòng)駕駛和高級(jí)輔助駕駛系統(tǒng)。近年來(lái),量產(chǎn)車型上毫米波雷達(dá)的裝配率不斷提高,小鵬P7就配備了5顆毫米波雷達(dá),理想ONE配備了4顆
    的頭像 發(fā)表于 06-16 09:01 ?1832次閱讀
    自動(dòng)駕駛<b class='flag-5'>毫米波</b><b class='flag-5'>雷達(dá)</b>之間會(huì)相互干擾嗎?

    毫米波雷達(dá)的實(shí)車連續(xù)測(cè)量應(yīng)用案例

    毫米波雷達(dá)憑借其出色的測(cè)距測(cè)速能力和全天候優(yōu)勢(shì),在汽車組合輔助駕駛系統(tǒng)的傳感器中占有重要一席。隨著產(chǎn)品從2D、3D向4D升級(jí),毫米波雷達(dá)的探測(cè)能力和應(yīng)用場(chǎng)景不斷增強(qiáng),4D
    的頭像 發(fā)表于 06-05 09:27 ?2635次閱讀
    多<b class='flag-5'>毫米波</b><b class='flag-5'>雷達(dá)</b>的實(shí)車連續(xù)測(cè)量應(yīng)用案例

    黑芝麻智能視覺(jué)與4D毫米波雷達(dá)前融合算法介紹

    本文介紹了黑芝麻智能視覺(jué)與4D毫米波雷達(dá)前融合算法,通過(guò)多模態(tài)特征對(duì)齊和時(shí)序建模,顯著提升逆光、遮擋等復(fù)雜場(chǎng)景下的目標(biāo)檢測(cè)精度,增強(qiáng)輔助駕駛安全性。
    的頭像 發(fā)表于 05-08 09:27 ?2407次閱讀
    黑芝麻智能<b class='flag-5'>視覺(jué)</b>與4D<b class='flag-5'>毫米波</b><b class='flag-5'>雷達(dá)</b>前融合算法介紹

    安信可60GHz毫米波雷達(dá):高精度點(diǎn)云檢測(cè)

    在智能感知領(lǐng)域,毫米波雷達(dá)以其全天候、抗干擾能力強(qiáng)、檢測(cè)精度高等優(yōu)勢(shì),成為智能交通、安防監(jiān)控、工業(yè)自動(dòng)化等領(lǐng)域的關(guān)鍵傳感技術(shù)。 安信可科技緊跟行業(yè)發(fā)展趨勢(shì),重磅推出全新 60GHz毫米波
    的頭像 發(fā)表于 04-29 17:53 ?1066次閱讀
    安信可60GHz<b class='flag-5'>毫米波</b><b class='flag-5'>雷達(dá)</b>:高精度點(diǎn)云<b class='flag-5'>檢測(cè)</b>

    毫米波雷達(dá)+AI識(shí)別:智能閘口的核心技術(shù)

    在現(xiàn)代智慧物流和通關(guān)監(jiān)管領(lǐng)域,毫米波雷達(dá)+AI識(shí)別的技術(shù)組合正成為智能閘口解決方案的核心。這一技術(shù)不僅實(shí)現(xiàn)了車輛無(wú)感通行,更以99%以上的識(shí)別準(zhǔn)確率重新定義了自動(dòng)化監(jiān)管的標(biāo)準(zhǔn)。 一、
    的頭像 發(fā)表于 04-29 10:58 ?540次閱讀
    <b class='flag-5'>毫米波</b><b class='flag-5'>雷達(dá)</b>+AI識(shí)別:智能閘口的核心技術(shù)

    新品!30元左右的60GHz毫米波雷達(dá)模組重磅登場(chǎng)!

    60GHz毫米波雷達(dá)當(dāng)前,隨著芯片集成度提升與算法優(yōu)化,60GHz毫米波雷達(dá)正加速向消費(fèi)級(jí)市場(chǎng)滲透,成為實(shí)現(xiàn)精準(zhǔn)、可靠、隱私安全的智能感知核心解決
    的頭像 發(fā)表于 04-23 18:02 ?1688次閱讀
    新品!30元左右的60GHz<b class='flag-5'>毫米波</b><b class='flag-5'>雷達(dá)</b>模組重磅登場(chǎng)!

    ADAS和防撞系統(tǒng)中的毫米波雷達(dá)方案

    汽車雷達(dá)是極可靠的傳感器技術(shù),有不同類型的雷達(dá)用于汽車應(yīng)用。毫米波(mmWave)雷達(dá)因其無(wú)論大氣條件多么惡劣都能穩(wěn)定地探測(cè)目標(biāo)而廣受歡迎。在各種傳感器中,應(yīng)用于汽車中的
    的頭像 發(fā)表于 04-07 09:47 ?2403次閱讀
    ADAS和防撞系統(tǒng)中的<b class='flag-5'>毫米波</b><b class='flag-5'>雷達(dá)</b><b class='flag-5'>方案</b>

    E54-24LD12B人體存在感應(yīng)毫米波雷達(dá)模組功能介紹

    人體存在感應(yīng)毫米波雷達(dá)模組,毫米波雷達(dá)模塊
    的頭像 發(fā)表于 03-21 10:30 ?893次閱讀