chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

AI預(yù)測奧斯卡準確率逐年上升,正確率高達93%

JIWa_melux_net ? 來源:未知 ? 作者:鄧佳佳 ? 2018-04-04 10:44 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

“人獸戀”童話版《水形物語》拿下最佳影片獎

分析預(yù)測,可能是人工智能AI)最擅長的技能之一。

第 90 屆奧斯卡金像獎(90th Academy Awards)頒獎典禮落下帷幕,《水形物語》獲得最佳影片,最佳導(dǎo)演由《水形物語》的吉爾莫·德爾·托羅斬獲,而加里·奧德曼憑借其在《至暗時刻》中的精彩表演,摘得“最佳男主角”,出演《三塊廣告牌》的弗蘭西斯·麥克多蒙德獲得最佳女主角。

而早在大獎公布之前,人工智能做了一個預(yù)測,與最終放出的(第90屆)奧斯卡頒獎結(jié)果相比,16個預(yù)測猜中了15 個,正確率達到前所未有的 93.75%。

從 2015 年開始,AI系統(tǒng)就開始預(yù)測奧斯卡獲獎電影,當時 AI 對第 87 屆 15 個奧斯卡獎項進行預(yù)測,并猜對了其中的 11 個獎項。

2016 年 2 月,距最終結(jié)果揭曉前一周,AI 再次出馬對其中17個主要獎項進行預(yù)測,而且很有信心的將它對當年第 88 屆奧斯卡獲獎電影預(yù)測結(jié)果公布在《新聞周刊》上,其中最令人印象深刻的是精準預(yù)測出“小李子”拿下最佳男主角小金人,讓人印象深刻。

2017 年 2 月,AI又對第 89 屆奧斯卡獎項中的 15 個主要獎項做了預(yù)測,最終猜對了 12 個獎項。

連續(xù)三年預(yù)測奧斯卡,準確率逐年提升,從 73%、76% 和 81%,到今年取得93.75%準確率的成績,當然除了奧斯卡,AI系統(tǒng)還曾對總統(tǒng)大選和美國NFL超級碗比賽進行過預(yù)測分析。

智能預(yù)測系統(tǒng)還可以將實時的人類洞察和AI的算法結(jié)合在一起。這樣做的優(yōu)勢首先是能集合人群智慧。其次,能確保最終的智能與人群的目標、愿望相符合。

這一智能預(yù)測系統(tǒng)給業(yè)內(nèi)帶來另一個啟發(fā),人類智慧可以群集嗎?要出現(xiàn)那樣的超級智能,需要上千人一起思考嗎,還是說上萬、上百萬?

集群智能源于對以螞蟻、蜜蜂等為代表的社會性昆蟲的群體行為的研究,最早被用在細胞機器人系統(tǒng)的描述中。它的控制是分布式的,不存在中心控制,群體具有自組織性。

典型的集群智能系統(tǒng)由一群簡單的主體構(gòu)成,每個主體和其它主體以及它們的環(huán)境進行局部的交互。盡管通常沒有集中控制機制來指示這些主體如何協(xié)作,但這些簡單的局部交互行為通常能涌現(xiàn)出復(fù)雜的全局行為。

近年來集群智能被用于政治和經(jīng)濟預(yù)測、評估核安全、公共政策、危機應(yīng)對措施,也有許多企業(yè)致力于利用消費者的智慧,對新產(chǎn)品、新服務(wù)和新功能進行優(yōu)化分析,以預(yù)測新的廣告活動。甚至一些企業(yè)希望能讓群體觀看一些電影預(yù)告片,借此預(yù)測這些電影預(yù)告片是否會吸引人們走進電影院,最近哈佛的研究者也開始利用群體人工智能預(yù)測金融市場。

在過去 50 年里,大多數(shù)人工智能研究都集中在一種自然智能上,即神經(jīng)智能,因此,關(guān)于如何制造人工神經(jīng)元和復(fù)制神經(jīng)智能,也就是復(fù)制大腦,目前已經(jīng)有很多相關(guān)的研究。

而大自然構(gòu)造智慧的方式是多樣的,除了神經(jīng)智能外,還有群體智能。自然系統(tǒng)已經(jīng)進化出了將大量人口的智力以最佳方式結(jié)合起來的能力。人類無法自然形成群體,我們沒有進化出鳥類和魚類那種天然會形成鳥群和魚群的能力,或者像蜜蜂那樣形成蜂群。但是,只要有正確的算法和正確的接口,或許我們就能讓這些人工智能群體智慧系統(tǒng)將人和算法連接起來。

人的思想并不能簡單的疊加,三個臭皮匠未必能PK諸葛亮,但是集群智能仍然是行業(yè)未來發(fā)展的一個有重要價值的啟示。隨著AI技術(shù)的深入演進,以及更多的人被卷入到技術(shù)變革中來,人從始至終都是不容忽視的核心因素。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    90

    文章

    38225

    瀏覽量

    297119
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49772

    瀏覽量

    261731

原文標題:AI預(yù)測奧斯卡,準確率已高達93.75%

文章出處:【微信號:melux_net,微信公眾號:人工智能大趨勢】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    除了準確率,電能質(zhì)量在線監(jiān)測裝置在諧波源識別方面還有哪些重要指標?

    除了識別準確率,電能質(zhì)量在線監(jiān)測裝置在諧波源識別方面的核心價值還依賴于 識別效率、定位精度、抗干擾能力、場景適配性 等關(guān)鍵指標,這些指標直接決定裝置能否在復(fù)雜現(xiàn)場環(huán)境中 “快速找對、精準定位、穩(wěn)定
    的頭像 發(fā)表于 10-22 16:22 ?795次閱讀

    電能質(zhì)量在線監(jiān)測裝置識別諧波源的準確率有多高?

    電能質(zhì)量在線監(jiān)測裝置識別諧波源的準確率受電網(wǎng)結(jié)構(gòu)、監(jiān)測方案、設(shè)備性能等多重因素影響,呈現(xiàn)顯著的 場景化差異 。根據(jù)行業(yè)研究與工程實踐,其準確率通常在 **65%~95%** 之間波動,具體可分為以下
    的頭像 發(fā)表于 10-22 16:18 ?693次閱讀

    提高條件分支指令預(yù)測正確率的方法

    基于全局分支歷史的ghare分支預(yù)測器 主要構(gòu)成 分支目標緩沖器BTB 分支歷史寄存器BHR 方式歷史寄存器PHT 對于某個條件分支指令而言,其全局歷史是相對恒定的,讓PHT同時保存全局歷史
    發(fā)表于 10-22 08:22

    基于全局預(yù)測歷史的gshare分支預(yù)測器的實現(xiàn)細節(jié)

    的地址位數(shù),雖然BHR位數(shù)越多,分支預(yù)測器的準確度越高,但正確率提高的代價是PHT消耗的資源呈指數(shù)形式迅速地增長,因此我們必須在面積與性能之間進行權(quán)衡。。最終經(jīng)過對各類32位RISC-V開源處理器內(nèi)核
    發(fā)表于 10-22 06:50

    如何統(tǒng)計蜂鳥E203的分支預(yù)測?

    想請問大家如何統(tǒng)計蜂鳥E203的分支預(yù)測,我嘗試在exu_commit模塊里統(tǒng)計,但是發(fā)現(xiàn)預(yù)測都有寫問題,想請教以下大家
    發(fā)表于 06-10 07:05

    海思SD3403邊緣計算AI數(shù)據(jù)訓(xùn)練概述

    模型,將模型轉(zhuǎn)化為嵌入式AI模型,模型升級AI攝像機,進行AI識別應(yīng)用。 AI訓(xùn)練模型是不斷迭代優(yōu)化過程,譬如,100個數(shù)據(jù)樣本模型的識別準確率
    發(fā)表于 04-28 11:11

    設(shè)備故障預(yù)警準確率提升!AI預(yù)測模型如何做到?

    隨著全球制造業(yè)的蓬勃發(fā)展,設(shè)備穩(wěn)定運行對于企業(yè)的生產(chǎn)效率和經(jīng)濟效益至關(guān)重要。然而,傳統(tǒng)的設(shè)備維護模式正面臨前所未有的挑戰(zhàn),每年因設(shè)備突發(fā)故障導(dǎo)致的生產(chǎn)損失達1.2萬億美元。設(shè)備預(yù)測性維護應(yīng)運而生,成為解決這一難題的關(guān)鍵所在。
    的頭像 發(fā)表于 03-24 11:29 ?1819次閱讀
    設(shè)備故障預(yù)警<b class='flag-5'>準確率</b>提升!<b class='flag-5'>AI</b><b class='flag-5'>預(yù)測</b>模型如何做到?

    浪潮信息:元腦EPAI已接入DeepSeek,大幅提升DeepSeek企業(yè)應(yīng)用準確率

    結(jié)合,深度開發(fā)模型潛力,快速實現(xiàn)本地化部署DeepSeek,構(gòu)建準確率高、安全穩(wěn)定的專屬智能應(yīng)用。實測數(shù)據(jù)顯示,DeepSeek在元腦企智EPAI上開發(fā)的企業(yè)應(yīng)用回答準確率達到95%。 ? 企業(yè)落地
    的頭像 發(fā)表于 02-23 07:32 ?892次閱讀
    浪潮信息:元腦EPAI已接入DeepSeek,大幅提升DeepSeek企業(yè)應(yīng)用<b class='flag-5'>準確率</b>

    AI賦能邊緣網(wǎng)關(guān):開啟智能時代的新藍海

    ,準確率達到99.9%。 這一技術(shù)革新正在創(chuàng)造巨大的商業(yè)價值。在智慧城市領(lǐng)域,AI邊緣網(wǎng)關(guān)可以實現(xiàn)交通流量實時分析、違章行為智能識別;在工業(yè)互聯(lián)網(wǎng)中,能夠?qū)崿F(xiàn)設(shè)備預(yù)測性維護、生產(chǎn)工藝優(yōu)化;在智慧能源領(lǐng)域
    發(fā)表于 02-15 11:41

    如何優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)

    訓(xùn)練過程中發(fā)生震蕩,甚至無法收斂到最優(yōu)解;而過小的學(xué)習(xí)則會使模型收斂速度緩慢,容易陷入局部最優(yōu)解。因此,正確設(shè)置和調(diào)整學(xué)習(xí)對于訓(xùn)練高效、準確的神經(jīng)網(wǎng)絡(luò)模型至關(guān)重要。 二、學(xué)習(xí)
    的頭像 發(fā)表于 02-12 15:51 ?1457次閱讀

    Meta非入侵式腦機技術(shù):AI讀取大腦信號打字準確率80%

    腦機技術(shù)主要通過AI模型與特定硬件的結(jié)合,將用戶的大腦信號映射成具體的鍵盤字符。該技術(shù)的準確率高達約80%,能夠準確判斷用戶在“敲擊”的按鍵,從而實現(xiàn)文字輸入。 值得注意的是,這項設(shè)備
    的頭像 發(fā)表于 02-11 15:45 ?1042次閱讀

    大摩預(yù)測CPO市場年增長高達172%

    的172%年復(fù)合增長擴張,并有望在2030年達到93億美元的市場規(guī)模。 在產(chǎn)業(yè)鏈布局方面,F(xiàn)OCI已經(jīng)鎖定了首階段唯一的FAU(可能是指某種關(guān)鍵組件或技術(shù)的供應(yīng)商)地位,預(yù)示著其在CPO市場中將占據(jù)重要位置。同時,AllRing也有望在2026年開始供應(yīng)CPO所需的關(guān)鍵
    的頭像 發(fā)表于 01-20 14:46 ?1602次閱讀

    Cirium發(fā)布業(yè)界首款生成式AI準點助手

    分析領(lǐng)域邁出了重要的一步。 作為Cirium計劃推出的若干生成式AI助手中的首個產(chǎn)品,OTP Awards AI旨在為用戶提供更加精準、高效的準點評估分析。該助手利用先進的生成式AI
    的頭像 發(fā)表于 01-16 14:27 ?863次閱讀

    請問AFE4400 SPO2精度和準確率如何?

    請問用TI 的AFE4400 EVM 測量SPO2 的值,有沒有詳細的說明其測量的準確率和精度,抗弱灌注等。謝謝! 比如如下類似: SpO2 測量范圍 0~100% 分辨 1% 精度 70~100%, 2%
    發(fā)表于 01-15 07:02

    OLED筆電滲透逐年提升

    的OLED筆電滲透預(yù)計將上升至3%。 盡管報告預(yù)計2025年的增速將相對有限,但一個值得關(guān)注的趨勢是,蘋果公司計劃在MacBook系列中引入OLED顯示技術(shù)。這一舉措無疑將為OLED筆電市場注入新的活力。預(yù)計隨著蘋果的加入,將帶動面板廠商在2026年底前投入OLED高世
    的頭像 發(fā)表于 12-20 15:58 ?833次閱讀