chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能深度學(xué)習未來應(yīng)該如何發(fā)展的詳細概述

DPVg_AI_era ? 來源:未知 ? 作者:易水寒 ? 2018-06-02 10:00 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

多年來,深度學(xué)習一直處于所謂的人工智能革命的最前沿,許多人相信深度學(xué)習將帶領(lǐng)我們進入通用AI時代。然而,從12,13年甚囂塵上,到如今的塵埃落地,浪潮一再的退去。面對疲軟的風口,養(yǎng)肥的豬,人工智能將何去何從?

AI Winter Is Well On Its Way

多年來,深度學(xué)習一直處于所謂的人工智能革命的最前沿,許多人相信深度學(xué)習將帶領(lǐng)我們進入通用AI時代。在2014,2015,2016年,很多事件每每推動人們對 Ai的理解邊界。例如Alpha Go等。特斯拉等公司甚至宣稱:全自動駕駛汽車正在路上。

但是現(xiàn)在,2018年中期,事情開始發(fā)生變化。從表面上看,NIPS會議仍然很火,關(guān)于AI的新聞也很多,Elon Mask仍然看好自動駕駛汽車,而Google CEO不斷重申Andrew Ng的口號,即AI比電力作出了更大的貢獻。但是這些言論已經(jīng)開始出現(xiàn)裂紋。裂紋最明顯的地方是自動駕駛- 這種現(xiàn)實世界中的實際應(yīng)用。

深度學(xué)習塵埃落定

當ImageNet有了很好的解決方案(注意這并不意味著視覺問題得到已經(jīng)解決【1】),該領(lǐng)域的許多杰出研究人員(甚至包括一直保持低調(diào)的Geoff Hinton)都在積極地接受采訪,在社交媒體上發(fā)布內(nèi)容(例如Yann Lecun,吳恩達,李飛飛等)。他們的話,可以總結(jié)為:世界正處在一場巨大的AI革命中。然而,好幾年已經(jīng)過去了,這些人的Twitter信息變得不那么活躍了,比如 Andrew Ng:

2013年 - 每天0.413推文

2014 年- 每天0.605條推文

2015 -每天0.320條推文

2016 -每天0.802推文

2017 -每天0.668推文

2018 -每天0.263推文(至5月24日)

也許這是因為Andrew 的某些夸張言論,在當下會被進行更詳細的審查,如下面的推文【2】所示:

人工智能深度學(xué)習未來應(yīng)該如何發(fā)展的詳細概述

不可否認,深度學(xué)習的熱度已經(jīng)大大下降,贊美深度學(xué)習作為AI終極算法的推文少得多了,而且論文正在變得不那么“革命”,現(xiàn)在大家換了個詞,叫:進化。

自從Alpha Zero以來,DeepMind已經(jīng)許久沒有產(chǎn)出令人驚嘆的東西了。 OpenAI更是相當?shù)牡驼{(diào),他們最近一次出現(xiàn)在媒體的報道上,是他們做了一個自動打Dota 2【3】的機器人 [我一開始以為,這是跟 Alpha Go 一樣的偉大,然后后來證明,并不是]。

從某些文章來看【4】,貌似Google實際上并不知道如何處理Deepmind,因為他們的結(jié)果顯然不如原先預(yù)期的那么實際......至于杰出的研究人員,他們一般都為了funding 在各種政府機構(gòu)間游走,Yann Lecun甚至【5】從 Facebook的AI首席科學(xué)家的位置上下臺了。

像這種從富有的大公司向政府資助的研究機構(gòu)的逐漸轉(zhuǎn)變表明,這些公司對這類研究的興趣(我認為是谷歌和Facebook)實際上正在慢慢消失。這些都是早期跡象,沒有人大聲的宣揚,但這些行動就像肢體語言,也能傳達某種意思。

大規(guī)模深度學(xué)習(實際并沒有)

深度學(xué)習的一個重要口號是它可以輕松的擴展。我們在2012年擁有60M參數(shù)的AlexNet,現(xiàn)在我們已經(jīng)有至少1000倍的數(shù)量的模型了嗎?好吧,我們可能會這樣做,但問題是 - 這些東西有1000x的能力提升嗎? 100倍的能力? openAI的研究派上用場:

人工智能深度學(xué)習未來應(yīng)該如何發(fā)展的詳細概述

因此,就視覺應(yīng)用而言,我們看到VGG和Resnets在計算資源應(yīng)用的一個數(shù)量級上飽和(就參數(shù)數(shù)量而言實際上較少)。Xception是谷歌Inception架構(gòu)的一種變體,實際上它在ImageNet上的表現(xiàn)只是略微優(yōu)于其他模型,因為AlexNet基本上解決了ImageNet。

因此,在比AlexNet計算量提高100倍的情況下,我們在視覺方面已經(jīng)有了近乎飽和的體系結(jié)構(gòu),換句話說,圖像分類的精確已經(jīng)提不動了。

神經(jīng)機器翻譯是所有大型網(wǎng)絡(luò)搜索玩家(google, baidu, yahoo 等)的一大努力,難怪它有多少機器就用多少機器(盡管谷歌翻譯仍然很糟糕,雖然已經(jīng)在變得更好了)。

該圖上的最新三點有趣地顯示了DeepMind和OpenAI應(yīng)用于游戲的強化學(xué)習相關(guān)項目。特別是AlphaGo Zero和稍微更通用的Alpha Zero需要大量計算,但不適用于真實世界的應(yīng)用程序,因為需要大量計算來模擬和生成這些數(shù)據(jù)來供這些模型使用。

好的,現(xiàn)在我們可以在幾分鐘內(nèi)完成AlexNet的訓(xùn)練,但是我們可以在幾天內(nèi)訓(xùn)練一個比AlexNet大1000倍,質(zhì)量更好的模型嗎?顯然不是。

所以實際上,這張旨在表明深度學(xué)習規(guī)模的圖,表明了最終結(jié)果恰恰相反。我們不能僅僅擴大AlexNet的規(guī)模來得到更好的結(jié)果——我們必須處理特定的體系結(jié)構(gòu)。有效的額外的計算, 不需要大量的數(shù)據(jù)樣本,才是努力的方向。

自動駕駛事故

迄今為止,對深度學(xué)習的聲譽打擊最大的事件來自自動駕駛領(lǐng)域。一開始人們認為End-to-End的深度學(xué)習可以以某種方式解決自動駕駛問題 (Nvidia特別推崇這一理念)?,F(xiàn)在我覺得地球上應(yīng)該沒有人還相信這一點(盡管我可能是錯的)。

看看去年加州車輛管理局DMV給各個廠商的自動駕駛車輛人為干預(yù)報告,Nvidia的自動駕駛汽車在缺少人為干預(yù)的情況下,連開10英里都做不到。

自2016年以來,特斯拉自動駕駛系統(tǒng)發(fā)生了幾起事故[6,7,8],其中一些事件是致命的[6,7]??梢哉f,特斯拉的自動駕駛輔助技術(shù)不應(yīng)該與自動駕駛混淆起來雖然在核心上它依賴于同一種技術(shù)。

都到今天了,它仍然不能自動停在路口,不能識別交通信號燈,甚至不能通過環(huán)形交叉路口。那是在2018年5月,在承諾特斯拉將自動駕駛從西海岸開到東海岸的幾個月后(盡管傳言是他們已經(jīng)嘗試過但是在小于30次人工干預(yù)的情況下無法實現(xiàn))。幾個月前(2018年2月),伊隆馬斯克(Elon Musk)在一次電話會議上被問及海岸到海岸的行駛問題時重復(fù)說到:

“我們本可以實現(xiàn)海岸到海岸的駕駛,但它需要太多的專門代碼來有效地進行游戲;或者使代碼變得脆弱一些,這樣它只適用于一個特定的路線,這不是通用的解決方案。

我對神經(jīng)網(wǎng)絡(luò)方面取得的進展感到非常興奮。但是看起來并沒有太多的進展。它會覺得這是一個蹩腳的司機。就像…好吧,這是一個非常好的司機。像“Holy Cow!”

那么,看看上面的圖表(來自O(shè)penAI),我似乎沒有看到指數(shù)級的進展。幾乎在這個領(lǐng)域的每一個科研人員在離開之前都沒有看到指數(shù)級的進展。實質(zhì)上,上述說法應(yīng)該被解釋為:“我們目前沒有可以安全地驅(qū)使我們實現(xiàn)岸到岸駕駛的技術(shù),盡管如果我們真的想要(也許......)我們可以偽造它。我們深深地希望神經(jīng)網(wǎng)絡(luò)領(lǐng)域的蓬勃發(fā)展盡快到來,并幫助我們免受恥辱和大規(guī)模的訴訟“。

但是迄今為止,人工智能泡沫中最大的刺點是Uber自駕車在亞利桑那州(Arizona)發(fā)生的撞死一名行人的事故。從NTSB的初步報告中,我們可以讀到一些令人驚訝的發(fā)言:

人工智能深度學(xué)習未來應(yīng)該如何發(fā)展的詳細概述

(自動駕駛系統(tǒng)會將行人識別為一個機器,或者說一個交通工具,對其運動速度的判斷就會有問題,預(yù)留的減速時間就會出現(xiàn)問題,從而出現(xiàn)緊急情況)

在報告中,除了整體系統(tǒng)設(shè)計的明顯失敗,令人吃驚的是,系統(tǒng)花費了很長時間去確定前方的物體到底是什么(行人、自行車、汽車或者其他),而不是作出判斷,保證不撞到它。主要有幾個原因:第一,人們通常會在事后表達他們當時的決定,例如,“我看到一個騎自行車的人,所以我轉(zhuǎn)向左邊避開他”。

大量的心理學(xué)研究提供了截然不同解釋--:當一個人遇到這種情況,會在很短的時間內(nèi),通過神經(jīng)反饋,將前方物體識別為障礙,并迅速行動,避開他。稍長時間后,他意識到剛才發(fā)生了什么,并提供口頭解釋。我們的許多決定里,有很多都不是用語言表達的。語言表達的開銷很大,并且現(xiàn)實中通常沒有那么充裕的時間。這些機制為了保護我們的安全,已經(jīng)進化了10億年的時間,雖然仍然可能導(dǎo)致錯誤,但我們對三維空間、速度、預(yù)測行為的理解能力,已經(jīng)通過進化過程,磨練的相當好了。

但是由于這些問題大多無法用語言來表達,并且很難測量,因此難以在這些方面對機器學(xué)習系統(tǒng)優(yōu)化。這種情況非常有利于基于Nvidia的端到端方法的發(fā)展,通過學(xué)習圖像到動作的映射,不考慮任何語言,從某種程度來說,這個方法沒有錯,但問題是,輸入空間的超高維變量和動作空間的低維標簽之間的差距非常大。因此,與輸入的信息量相比,“標簽”的數(shù)量非常小,在這種情況下,算法非常容易學(xué)習到虛假的關(guān)系,正如在深度學(xué)習中所舉得例子一樣,需要不同的范式,將對輸入空間的感知能力作為第一步,使得系統(tǒng)能夠提取真實世界的語義特征,而不是虛假的相關(guān)性??梢蚤喿x之前的文章【9】。

事實上,如果說我們從深度學(xué)習的爆發(fā)式增長中學(xué)到了什么的話,那就是高維圖像空間中含有非常多的偽模式,并在許多圖像中進行了泛化,這就使分類器好像理解了它們所看到的圖片那樣。即使那些頂級研究人員亦不得不承認,事實并非如此。

需要提到的是,更高層的人正在意識到這種問題,并開始公開的批評它。最為活躍的要數(shù)Gary Marcus。雖然我并不認同Gary關(guān)于AI的所有觀點,但我們都認同,它還沒有像宣傳的那么強大。他的博文Deeplearning: A critical appraisal【10】和In defense of skepticism about deep learning【11】中,詳細的解釋了深度學(xué)習的宣傳過程。我很尊重Gary,他表現(xiàn)的就像一個真正的科學(xué)家,而很多深度學(xué)習名人,卻像是廉價的明星一樣。

結(jié)論

預(yù)測人工智能的冬天就像是猜測股市崩盤一樣——不可能精確地知道發(fā)生的時間,但幾乎可以肯定會在某個時刻發(fā)生,就像股市崩盤之前,有跡象表明會發(fā)生危機,但在當時的環(huán)境中,卻很容易被大家忽視。

在我看來,深度學(xué)習已經(jīng)出現(xiàn)了明顯的下降跡象。我并不知道這個冬天會有多“深度”,我也不知道接下來會發(fā)生什么,但我可以肯定,這個冬天一定會來臨,并且只會來的比想象的要早。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49746

    瀏覽量

    261591
  • 深度學(xué)習
    +關(guān)注

    關(guān)注

    73

    文章

    5591

    瀏覽量

    123913

原文標題:深度學(xué)習到頂,AI寒冬將至!

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    人工智能+消費:技術(shù)賦能與芯片驅(qū)動未來

    電子發(fā)燒友網(wǎng)站提供《人工智能+消費:技術(shù)賦能與芯片驅(qū)動未來.pptx》資料免費下載
    發(fā)表于 11-26 14:50 ?4次下載

    挖到寶了!人工智能綜合實驗箱,高校新工科的寶藏神器

    和生態(tài)體系帶到使用者身邊 ,讓我們在技術(shù)學(xué)習和使用上不再受制于人。 三、多模態(tài)實驗,解鎖AI全流程 它嵌入了2D視覺、深度視覺、機械手臂、語音識別、嵌入式傳感器等多種類AI模塊,涵蓋人工智能領(lǐng)域主要
    發(fā)表于 08-07 14:30

    挖到寶了!比鄰星人工智能綜合實驗箱,高校新工科的寶藏神器!

    和生態(tài)體系帶到使用者身邊 ,讓我們在技術(shù)學(xué)習和使用上不再受制于人。 三、多模態(tài)實驗,解鎖AI全流程 它嵌入了2D視覺、深度視覺、機械手臂、語音識別、嵌入式傳感器等多種類AI模塊,涵蓋人工智能領(lǐng)域主要
    發(fā)表于 08-07 14:23

    超小型Neuton機器學(xué)習模型, 在任何系統(tǒng)級芯片(SoC)上解鎖邊緣人工智能應(yīng)用.

    Neuton 是一家邊緣AI 公司,致力于讓機器 學(xué)習模型更易于使用。它創(chuàng)建的模型比競爭對手的框架小10 倍,速度也快10 倍,甚至可以在最先進的邊緣設(shè)備上進行人工智能處理。在這篇博文中,我們將介紹
    發(fā)表于 07-31 11:38

    人工智能技術(shù)的現(xiàn)狀與未來發(fā)展趨勢

    人工智能技術(shù)的現(xiàn)狀與未來發(fā)展趨勢 ? ? 近年來,人工智能(AI)技術(shù)迅猛發(fā)展,深刻影響著各行各業(yè)。從計算機視覺到自然語言處理,從自動駕駛到
    的頭像 發(fā)表于 07-16 15:01 ?1196次閱讀

    CES Asia 2025蓄勢待發(fā),聚焦低空經(jīng)濟與AI,引領(lǐng)未來產(chǎn)業(yè)新變革

    可能性。智能無人機在物流配送、巡檢監(jiān)測等領(lǐng)域的應(yīng)用愈發(fā)成熟,大大提高了工作效率和精準度。低空經(jīng)濟的發(fā)展,不僅帶動了相關(guān)技術(shù)的進步,還創(chuàng)造了新的就業(yè)機會和經(jīng)濟增長點。 人工智能領(lǐng)域同樣發(fā)展
    發(fā)表于 07-09 10:29

    最新人工智能硬件培訓(xùn)AI 基礎(chǔ)入門學(xué)習課程參考2025版(大模型篇)

    人工智能大模型重塑教育與社會發(fā)展的當下,無論是探索未來職業(yè)方向,還是更新技術(shù)儲備,掌握大模型知識都已成為新時代的必修課。從職場上輔助工作的智能助手,到課堂用于學(xué)術(shù)研究的
    發(fā)表于 07-04 11:10

    軍事應(yīng)用中深度學(xué)習的挑戰(zhàn)與機遇

    人工智能尤其是深度學(xué)習技術(shù)的最新進展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習技術(shù)的
    的頭像 發(fā)表于 02-14 11:15 ?823次閱讀

    探究人工智能發(fā)展前沿:智能體的演進及其社會影響

    導(dǎo)語:2024年12月,世界經(jīng)濟論壇發(fā)布了《探索人工智能前沿:人工智能體的演變及其影響》白皮書,不僅探討了人工智能體的發(fā)展軌跡,還分析了其在醫(yī)療、教育和金融等行業(yè)中提升效率的潛力。同時
    的頭像 發(fā)表于 02-10 09:44 ?1337次閱讀
    探究<b class='flag-5'>人工智能</b><b class='flag-5'>發(fā)展</b>前沿:<b class='flag-5'>智能</b>體的演進及其社會影響

    數(shù)學(xué)專業(yè)轉(zhuǎn)人工智能方向:考研/就業(yè)前景分析及大學(xué)四年學(xué)習路徑全揭秘

    隨著AI技術(shù)的不斷進步,專業(yè)人才的需求也日益增長。數(shù)學(xué)作為AI的基石,為機器學(xué)習、深度學(xué)習、數(shù)據(jù)分析等提供了理論基礎(chǔ)和工具,因此越來越多的數(shù)學(xué)專業(yè)學(xué)生開始考慮在人工智能領(lǐng)域
    的頭像 發(fā)表于 02-07 11:14 ?1702次閱讀
    數(shù)學(xué)專業(yè)轉(zhuǎn)<b class='flag-5'>人工智能</b>方向:考研/就業(yè)前景分析及大學(xué)四年<b class='flag-5'>學(xué)習</b>路徑全揭秘

    人工智能和機器學(xué)習以及Edge AI的概念與應(yīng)用

    作者:DigiKey Editor 人工智能(AI)已經(jīng)是當前科技業(yè)最熱門的話題,且其應(yīng)用面涉及人類生活的各個領(lǐng)域,對于各個產(chǎn)業(yè)都帶來相當重要的影響,且即將改變?nèi)祟?b class='flag-5'>未來發(fā)展的方方面面。本文將為您介紹
    的頭像 發(fā)表于 01-25 17:37 ?1581次閱讀
    <b class='flag-5'>人工智能</b>和機器<b class='flag-5'>學(xué)習</b>以及Edge AI的概念與應(yīng)用

    【「具身智能機器人系統(tǒng)」閱讀體驗】1.初步理解具身智能

    未來,涵蓋如基于行為的人工智能、生物啟發(fā)的進化人工智能及認知機器人技術(shù)的發(fā)展。這一歷史背景為隨后的大模型驅(qū)動的具身智能討論奠定了基礎(chǔ),隨著
    發(fā)表于 12-28 21:12

    云知聲受邀參加北京人工智能企業(yè)座談會

    日前,南京市市長陳之常帶隊赴北京拜訪有關(guān)企業(yè)和單位,并主持召開人工智能企業(yè)座談會。此次會議圍繞“協(xié)同推動AI創(chuàng)新發(fā)展,共筑智能未來”主題展開,旨在通過政企間的
    的頭像 發(fā)表于 12-24 10:25 ?700次閱讀

    人工智能推理及神經(jīng)處理的未來

    人工智能行業(yè)所圍繞的是一個受技術(shù)進步、社會需求和監(jiān)管政策影響的動態(tài)環(huán)境。機器學(xué)習、自然語言處理和計算機視覺方面的技術(shù)進步,加速了人工智能發(fā)展和應(yīng)用。包括醫(yī)療保健、金融和制造業(yè)在內(nèi)的各
    的頭像 發(fā)表于 12-23 11:18 ?871次閱讀
    <b class='flag-5'>人工智能</b>推理及神經(jīng)處理的<b class='flag-5'>未來</b>

    人機環(huán)境系統(tǒng)智能化:人工智能未來發(fā)展趨勢

    人機環(huán)境系統(tǒng)智能(Human-Machine-Environment System Intelligence,簡稱HMESI)是人工智能(AI)發(fā)展的一個重要趨勢,旨在通過智能技術(shù)的
    的頭像 發(fā)表于 12-09 14:05 ?1190次閱讀