chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

掃描電鏡圖像分辨率評估新方法

中科院半導(dǎo)體所 ? 來源:老千和他的朋友 ? 2025-08-12 10:38 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

文章來源:老千和他的朋友們

原文作者:孫千

本文主要講述掃描電鏡圖像分辨率評估新方法(SIRAF)。

SEM是一種功能強(qiáng)大的工具,在材料科學(xué)、生物學(xué)、納米技術(shù)和醫(yī)學(xué)研究等科學(xué)領(lǐng)域得到廣泛應(yīng)用,其常見用途是測量納米和微米尺度上物體或結(jié)構(gòu)的尺寸。

大多數(shù)圖像可視為理想圖像(It(x,y))通過與核函數(shù)的卷積而產(chǎn)生模糊效果。這個核函數(shù)被稱為圖像點(diǎn)擴(kuò)散函數(shù)(PSF(x,y))。對于SEM,PSF主要由電子束的形狀和空間密度決定,通常遵循艾里斑模式。艾里斑的數(shù)學(xué)表達(dá)式可用高斯函數(shù)近似,這適用于聚焦和近聚焦圖像。

PSF的寬度可作為分辨率的度量標(biāo)準(zhǔn),因?yàn)樗鼘?yīng)于成像信號的脈沖響應(yīng)。因此,PSF寬度反映了圖像中最小可分辨對象的大小,并影響尺寸測量的不確定性。描述PSF寬度的常用參數(shù)是高斯半高全寬(FWHM)。除PSF外,SEM圖像形成過程中還存在噪聲影響(N(x,y)),主要由源和樣品電子發(fā)射的隨機(jī)性引起。因此,整體圖像形成過程可描述為:

ISEM(x, y) = It(x, y)?PSF(x, y) + N(x, y)

其中ISEM(x,y)為獲取的SEM圖像,?為卷積算子,x和y為圖像坐標(biāo)。

理想的點(diǎn)擴(kuò)散函數(shù)(Point Spread Function, PSF)應(yīng)當(dāng)具有兩個像素的最大空間周期,使得如階躍函數(shù)般銳利的強(qiáng)度躍遷能夠完全分辨,這一標(biāo)準(zhǔn)被稱為奈奎斯特采樣。然而,在實(shí)際成像過程中,即使在最優(yōu)設(shè)置條件下,PSF往往對獲取的圖像產(chǎn)生不可避免的模糊效應(yīng),這種現(xiàn)象在高倍率成像中表現(xiàn)得尤為明顯。

當(dāng)束斑直徑超過單個像素的尺寸時,相鄰像素的信息會發(fā)生混合,從而導(dǎo)致圖像的實(shí)際分辨率降低。這種現(xiàn)象被稱為過采樣和空放大,它直接影響了成像系統(tǒng)的分辨能力。因此,在任何成像系統(tǒng)中獲取高分辨率圖像時,PSF的優(yōu)化都是一個關(guān)鍵的技術(shù)過程。

對于SEM而言,PSF主要受電子束的尺寸和形狀影響。這些參數(shù)不僅取決于用戶的操作技能,還與電鏡的各項(xiàng)設(shè)置和校準(zhǔn)狀態(tài)密切相關(guān),如焦點(diǎn)調(diào)節(jié)、像散校正、光闌選擇、束斑尺寸、探針輪廓、電壓設(shè)置、掃描速率和束流等參數(shù)。更為復(fù)雜的是,樣品本身也會通過二次電子產(chǎn)額、發(fā)射區(qū)域大小、表面形貌、位置漂移和充電程度等因素對PSF產(chǎn)生顯著影響。

這些多重因素的綜合作用增加了PSF評估的復(fù)雜性,使得PSF可能因用戶、儀器和圖像的不同而產(chǎn)生變化,甚至在同一圖像的不同局部區(qū)域也會因樣品的高度、厚度、成分和形貌差異而呈現(xiàn)出不同的特征。

目前尚無簡單且成熟的方法來評估SEM圖像的實(shí)際分辨率,盡管已提出多種方法。這些方法包括間隙法、對比度-梯度法以及基于快速傅里葉變換(FFT)分析的方法。

間隙法作為最早的技術(shù)之一,其原理是依靠用戶識別獲取圖像中兩個物體之間最小可辨別的間隙,并將其作為圖像分辨率的度量標(biāo)準(zhǔn)。然而,這種方法高度依賴于樣品特性和用戶的主觀判斷,主要適用于標(biāo)準(zhǔn)樣品,如碳基底上的金或錫顆粒等特定樣品類型,其應(yīng)用范圍相對有限。

相比之下,對比度-梯度法是一種全自動技術(shù)。它將圖像分辨率定義為從5×5像素子集中局部梯度和對比度躍遷確定的局部分辨率的加權(quán)調(diào)和平均值。該方法已被證明優(yōu)于間隙法,但在處理高分辨率和噪聲圖像方面存在困難。

基于FFT分析的方法首先將圖像分解為具有不同波長的加權(quán)正弦函數(shù),然后利用幅度譜或功率譜進(jìn)行分辨率和像散測量。在這類方法中,SMART程序是一個較為典型的應(yīng)用,它要求用戶輸入閾值來區(qū)分功率譜中的信號和噪聲,從而使程序能夠?qū)E圓擬合到圖像的二值化FFT,并利用其長軸和短軸來估算圖像分辨率和像散。然而,由于該方法依賴用戶區(qū)分信號和噪聲的主觀判斷能力,可能存在系統(tǒng)性偏差。

Mizutani等人在2016年提出了另一種FFT方法,通過計(jì)算功率譜的徑向平均值,并將直線擬合到所得曲線的陡峭部分,基于擬合線的斜率估算高斯PSF的半高全寬。但是,該方法涉及用直線近似非線性數(shù)據(jù)集,這種處理方式可能存在理論上的問題。

互相關(guān)方法作為另一種基于FFT的技術(shù),通過將像素子集的FFT復(fù)共軛與來自同一圖像的位移像素子集的FFT相乘,然后進(jìn)行逆FFT處理來估算分辨率。盡管該方法具有較高的精度,但需要調(diào)整可調(diào)參數(shù)以獲得最大的精度和準(zhǔn)確性,且僅限于沒有高對比度特征的均勻樣品。

為了解決現(xiàn)有方法的局限性,Anders Brostrom等人提出了基于傅里葉分析的空間圖像分辨率評估(SIRAF)算法。該算法采用FFT分析技術(shù),能夠估算圖像中尺寸測量伴隨的不確定性,直接從單個圖像提供分辨率測量結(jié)果,無需額外的用戶輸入,但為用戶提供了修改和檢查結(jié)果的選項(xiàng)。

SIRAF算法的核心創(chuàng)新在于,它不是簡單地?cái)M合直線,而是將理論推導(dǎo)的函數(shù)擬合到幅度譜的徑向平均值。這種方法基于兩個關(guān)鍵假設(shè):首先,PSF可用高斯函數(shù)進(jìn)行合理近似;其次,樣品圖像中的邊緣是銳利的,可用階躍函數(shù)進(jìn)行描述。這些假設(shè)對于包含均勻背景上高對比度結(jié)構(gòu)的樣品是合理的,例如沉積在碳基底上的顆?;蛞后w中顆粒的原位STEM圖像。

SIRAF算法經(jīng)過了系統(tǒng)性的驗(yàn)證測試。首先,該算法在一系列模擬圖像上進(jìn)行了測試,這些模擬圖像使用基于Cizmar等人2008年工作的定制Python代碼生成。模擬圖像涵蓋了廣泛的參數(shù)設(shè)置,在焦點(diǎn)、像散、噪聲、強(qiáng)度差異、振動效應(yīng)以及顆粒大小、對比度和邊緣效應(yīng)方面都存在變化,這使得研究人員能夠系統(tǒng)地識別算法的潛在陷阱和不足之處。

此外,該算法還在來自碳上金樣品的一系列SEM圖像上進(jìn)行了實(shí)際測試,這些圖像在多種不同倍率下作為焦點(diǎn)系列獲取。最終,該方法在包括二次電子和背散射SEM、SEM中的STEM、高角環(huán)形暗場STEM、明場TEM以及明場和暗場光學(xué)圖像在內(nèi)的多種成像模式上進(jìn)行了綜合演示。

研究結(jié)果表明,SIRAF算法在所有測試情況下都給出了合理和可靠的結(jié)果,證明了該方法對多種成像模式具有良好的穩(wěn)健性和通用性。對于計(jì)量學(xué)應(yīng)用而言,能夠針對具體情況估算圖像分辨率,以考慮尺寸測量的不確定性并評估最小可分辨物體,具有重要的實(shí)際意義。

實(shí)驗(yàn)方法

在許多SEM圖像中,小物體的強(qiáng)度輪廓通常呈現(xiàn)為平滑的峰,相當(dāng)于高斯模糊的點(diǎn)源。相比之下,較大物體顯示更銳利的變化,在其中心有一個平臺區(qū)域,類似于兩個符號相反的高斯模糊階躍函數(shù)——一個向上,另一個向下?;谶@些觀察,假設(shè)SEM圖像中的物體可用與高斯函數(shù)卷積的階躍函數(shù)來近似。由于符號變化不影響頻率空間中的函數(shù),考慮一個階躍函數(shù)就足夠了。

階躍函數(shù):h(x) = 1/2 (1 + sgn(x))(1)

高斯函數(shù):g(x) = βe^(-x2/(2σ2))(2)

其中,x為空間坐標(biāo),β為幅度縮放參數(shù),σ為高斯PSF的標(biāo)準(zhǔn)偏差。感興趣的參數(shù)是σ,因?yàn)樗c背景和物體之間過渡邊緣的清晰度相關(guān)。在本研究中,F(xiàn)WHM被用作分辨率度量,約為2.355σ。

為獲得整個圖像的平均FWHM,分析在頻率空間中進(jìn)行,因此需要兩個函數(shù)的傅里葉變換(FT):

階躍函數(shù)的傅里葉變換:FFT[h(x)] = H(k) = 1/2 δ(k) - i/(πk)(3)

高斯函數(shù)的傅里葉變換:FFT[g(x)] = G(k) = β√(2π)σe^(-2(πσk)2)(4)

其中k為頻率,H(k)和G(k)分別為h(x)和g(x)的FT。DC分量(k = 0)與此分析無關(guān),因?yàn)榉直媛市畔⑽挥趉 ≠ 0分量中,因此可以忽略H(k)中的delta函數(shù)。

根據(jù)卷積定理,得到:

G(k)*H(k) = -iσβ√(2π)/k e^(-2(πσk)2)(5)

獲取G(k)*H(k)的絕對值以得到幅度譜。這樣做會丟棄相位貢獻(xiàn)并消除復(fù)數(shù)值(i)。在函數(shù)可用于擬合之前,添加值1并取自然對數(shù)。這樣壓縮了幅度譜中覆蓋的動態(tài)范圍并確保正值,使后續(xù)擬合程序更加穩(wěn)健。因此,用于擬合的函數(shù)由以下方程給出:

c + ln(1 + |G(k)*H(k)|) = c + ln(1 + σβ√(2π)/k e^(-2(πσk)2)) (6)

其中c為擬合過程中使用的任意縮放參數(shù)。

b68fd720-72ad-11f0-a18e-92fbcf53809c.jpg

圖1. (a–d) SIRAF算法的步驟,下文將詳細(xì)描述。(a)原始圖像,(b)應(yīng)用漢寧(Hanning)過濾器后的圖像,(c)漢寧過濾圖像的振幅譜,(d)在振幅譜上標(biāo)記的距離區(qū)間示例,(e)各距離區(qū)間的平均振幅與其半徑的關(guān)系圖。圖中藍(lán)色繪制的是從圖像本身獲得的數(shù)值,而紅色虛線繪制的是用方程(6)中表達(dá)式擬合得到的結(jié)果。

FFT處理的核心步驟

SIRAF算法的核心在于對目標(biāo)圖像進(jìn)行一系列精心設(shè)計(jì)的FFT處理步驟。首先,算法采用漢寧窗(Hanning window)對原始圖像進(jìn)行預(yù)處理。這一步驟的重要性在于消除圖像邊界處的不連續(xù)性問題。在FFT分析中,由于循環(huán)邊界條件的存在,圖像邊界的不連續(xù)性會在幅度譜中產(chǎn)生明顯的垂直和水平亮線,即所謂的吉布斯效應(yīng)(Gibbs effect)。漢寧窗的應(yīng)用通過對圖像中心區(qū)域賦予更高權(quán)重,而對靠近邊界的區(qū)域逐漸降權(quán)至零,有效緩解了這一問題。

在幅度譜分析階段,算法對位移FFT圖像的絕對值進(jìn)行重新縮放處理。具體而言,通過在獲取自然對數(shù)之前將所有數(shù)值加1,確保了數(shù)據(jù)的數(shù)值穩(wěn)定性。隨后,基于像素到圖像中心的歐幾里得距離,將像素分配到不同的距離區(qū)間中。

這種分區(qū)策略的精妙之處在于,通過將像素坐標(biāo)標(biāo)準(zhǔn)化至圖像尺寸,使得圖像中心的距離為0,角落像素的距離約為0.707,形成了FFT的歸一化正弦頻率表示。

徑向平均與擬合分析

算法的核心創(chuàng)新在于將二維頻域信息壓縮為一維徑向平均函數(shù)。通過確定每個距離區(qū)間的平均幅度,并將其繪制為距圖像中心距離的函數(shù),算法實(shí)現(xiàn)了圖像信息的有效降維。這種徑向平均方法不僅簡化了數(shù)據(jù)處理復(fù)雜度,更為后續(xù)的數(shù)學(xué)擬合提供了理想的數(shù)據(jù)結(jié)構(gòu)。

在擬合過程中,算法采用了改進(jìn)的策略來處理漢寧窗引入的低頻成分影響。由于漢寧窗會在圖像中添加低頻成分,可能影響接近零頻率處徑向分區(qū)幅度譜的斜率,算法提供了排除低頻和高于0.5頻率成分的選項(xiàng),從而在特定情況下改善擬合效果并提供更可靠的FWHM(半峰全寬)估計(jì)。

算法實(shí)現(xiàn)與性能評估

SIRAF算法采用Python 3.7開發(fā),充分利用了OpenCV、NumPy和SciPy等成熟庫的功能。算法的輸入簡潔明了,僅需單個圖像文件,輸出包括以像素為單位的σ和FWHM值,以及基于擬合參數(shù)協(xié)方差估計(jì)的標(biāo)準(zhǔn)偏差誤差。在性能方面,算法表現(xiàn)出色,對800×800像素的SEM圖像處理時間僅約0.42秒,顯示了良好的計(jì)算效率。

為驗(yàn)證算法的有效性,研究者采用了多層次的驗(yàn)證策略。首先通過具有已知參數(shù)的模擬圖像驗(yàn)證算法的準(zhǔn)確性,隨后在真實(shí)SEM圖像上進(jìn)行測試。實(shí)驗(yàn)涵蓋了多種放大倍率(5k至100k倍)和相應(yīng)的像素分辨率(57.8至2.9 nm/像素),確保了算法在不同成像條件下的適用性。

應(yīng)用范圍與實(shí)用價值

SIRAF算法的應(yīng)用范圍極為廣泛,涵蓋了現(xiàn)代科學(xué)成像的主要技術(shù)類型。算法在SEM中的STEM模式、二次電子和背散射電子成像、HAADF-STEM、TEM以及明暗場光學(xué)成像等多種成像方式上均表現(xiàn)出良好的適應(yīng)性。測試樣品包括銀和金納米顆粒、聚苯乙烯乳膠珠、NaCl晶體、碳納米管等多種材料體系,充分驗(yàn)證了算法的通用性和魯棒性。

實(shí)驗(yàn)結(jié)果與討論

實(shí)驗(yàn)設(shè)計(jì)與圖像模擬

為了全面評估SIRAF算法的性能,研究采用了50張具有不同焦距的模擬圖像進(jìn)行初步測試。這些圖像采用標(biāo)準(zhǔn)設(shè)置進(jìn)行模擬,生成的圖像類似于碳基底上的金顆粒結(jié)構(gòu),并以掃描電鏡(SEM)圖像的形式呈現(xiàn)明亮邊緣特征。值得注意的是,該測試將算法應(yīng)用范圍擴(kuò)展到假設(shè)模糊階躍函數(shù)的情況,這在一定程度上超出了算法的原始設(shè)計(jì)范圍。

在圖像模擬過程中,代碼設(shè)置基于用戶指定限制范圍內(nèi)的隨機(jī)值生成圖像。這種設(shè)計(jì)確保了測試圖像的多樣性,同時保持了實(shí)驗(yàn)的科學(xué)性。雖然顆粒位置等參數(shù)會發(fā)生變化,但整體尺寸分布和強(qiáng)度分布在不同圖像間保持一致,從而避免了對算法結(jié)果的干擾。

不同模糊程度下的圖像特征分析

實(shí)驗(yàn)中,50張圖像使用標(biāo)準(zhǔn)設(shè)置生成,通過改變高斯PSF的寬度來模擬不同的聚焦?fàn)顟B(tài)。寬度參數(shù)在50個步長中從半高全寬(FWHM)的0像素變化到23.55像素,對應(yīng)的sigma值從0像素到10像素,步長為0.2像素。

通過對三種典型情況的分析,可以清晰地觀察到模糊程度對圖像質(zhì)量的影響。當(dāng)FWHM為1.41像素時,圖像呈現(xiàn)出非常清晰的SEM圖像特征,所有物體的內(nèi)部結(jié)構(gòu)均清晰可見,最小物體完全分辨,邊緣呈現(xiàn)近似階躍狀特征。當(dāng)FWHM增加到4.71像素時,圖像對應(yīng)輕微失焦?fàn)顟B(tài),邊緣銳利度下降,較小物體在某些情況下會與其他物體模糊在一起。而當(dāng)FWHM達(dá)到23.55像素時,圖像呈現(xiàn)高度失焦?fàn)顟B(tài),較小物體不再可辨,較大特征模糊融合,幾乎形成單一結(jié)構(gòu)。

b6a1bf76-72ad-11f0-a18e-92fbcf53809c.jpg

圖2. (a–c)模擬的"標(biāo)準(zhǔn)設(shè)置"圖像,分別經(jīng)過半峰全寬為1.41、4.71和23.55像素的高斯點(diǎn)擴(kuò)散函數(shù)模糊處理。所有圖像均為800×800像素。(d)圖像(a–c)中每個距離區(qū)間的歸一化頻率與平均幅度的關(guān)系圖,以及SIRAF算法獲得的擬合結(jié)果。(e)所有50張模擬圖像的高斯點(diǎn)擴(kuò)散函數(shù)已知半峰全寬與擬合值的對比。誤差線對應(yīng)于從擬合協(xié)方差矩陣確定的估計(jì)標(biāo)準(zhǔn)偏差。圖中同時顯示了SMART算法的結(jié)果,其誤差線對應(yīng)于同一用戶連續(xù)三次運(yùn)行結(jié)果的標(biāo)準(zhǔn)偏差。

頻域分析與算法擬合性能

通過徑向平均幅度譜分析,研究進(jìn)一步驗(yàn)證了不同模糊程度圖像的頻域特征。聚焦圖像由于包含豐富的細(xì)節(jié)信息,在高頻和低頻快速傅里葉變換(FFT)分量中均攜帶重要信息,導(dǎo)致頻譜曲線呈現(xiàn)傾斜特征。相比之下,模糊圖像細(xì)節(jié)較少,其FFT主要由低頻分量的陡峭上升所控制。研究表明,方程(6)中的表達(dá)式能夠?yàn)樗腥N模糊情況產(chǎn)生合理的擬合結(jié)果,證明該表達(dá)式可以有效捕獲清晰和模糊圖像中的強(qiáng)度變化特征。

SIRAF算法性能驗(yàn)證

通過將50張模擬圖像的實(shí)際PSF FWHM與擬合值進(jìn)行對比分析,研究全面評估了SIRAF算法的準(zhǔn)確性。實(shí)驗(yàn)結(jié)果表明,SIRAF算法在大約1到20像素的范圍內(nèi)能夠?qū)?shí)際FWHM估計(jì)控制在半個像素的誤差范圍內(nèi),顯示出良好的精度表現(xiàn)。當(dāng)FWHM大于20像素時,雖然算法誤差超過0.5像素,但相對誤差仍然保持在較低水平(小于5%)。

然而,當(dāng)接近像素分辨率(FWHM小于1像素)時,SIRAF算法的誤差增加到最大1.5像素。這一現(xiàn)象在基于FFT分析的分辨率方法中較為常見,主要原因是具有像素分辨率的圖像在其幅度譜的所有空間頻率中都包含信息,使得從信號到噪聲的轉(zhuǎn)換檢測變得困難。

算法比較與應(yīng)用前景

與SMART算法的對比分析顯示,兩種算法產(chǎn)生了非常相似的結(jié)果。然而,SIRAF算法具有自動化程度高的優(yōu)勢,而SMART算法需要用戶對每張圖像進(jìn)行手動操作,且存在用戶間變異的問題。

SIRAF算法性能評估研究

為進(jìn)一步驗(yàn)證SIRAF算法的魯棒性,對其在廣泛參數(shù)設(shè)置下的模擬圖像中進(jìn)行了深入測試。測試參數(shù)涵蓋泊松噪聲程度、像散效應(yīng)、振動影響(包括振動像素偏移的數(shù)量和幅度)、邊緣效應(yīng)的強(qiáng)度和寬度、顆粒間強(qiáng)度差異,以及顆粒數(shù)量、尺寸和內(nèi)部圖案等因素。所有圖像均采用"標(biāo)準(zhǔn)設(shè)置"生成,每次僅變更單一參數(shù)和圖像模糊程度。

噪聲水平和像散的影響

分析結(jié)果表明,大多數(shù)參數(shù)對SIRAF算法的性能影響甚微,僅像散和噪聲水平對結(jié)果產(chǎn)生顯著影響。噪聲通過計(jì)算圖像的泊松噪聲并與原始圖像混合的方式引入,用戶可通過調(diào)節(jié)噪聲圖像相對于原始圖像的權(quán)重比來控制噪聲水平。需要注意的是,噪聲水平為10時已遠(yuǎn)超簡單泊松噪聲范疇,更接近椒鹽噪聲特征。

圖3展示了噪聲對算法的影響以及不同噪聲設(shè)置下的三張模擬圖像。在無噪聲(0.0)情況下,歸一化頻率0.5處觀察到的信號下降源于微弱的吉布斯效應(yīng)。

b6b33814-72ad-11f0-a18e-92fbcf53809c.jpg

圖3. (a–c)三幅分析圖像,F(xiàn)WHM為2.36像素,噪聲水平從左到右遞增。所有圖像均為800×800像素。(d)噪聲設(shè)置為0、0.4、2和10,F(xiàn)WHM為2.36像素的圖像的歸一化頻率與各距離區(qū)間的平均幅值的關(guān)系圖,以及使用SIRAF獲得的擬合結(jié)果。(e)高斯PSF擬合FWHM與實(shí)際FWHM之間的誤差與實(shí)際FWHM的關(guān)系圖,對應(yīng)圖(d)中的四次擬合結(jié)果。

當(dāng)FWHM低于10像素時,噪聲對算法結(jié)果產(chǎn)生明顯影響。在此條件下,盡管實(shí)際FWHM為2.355像素,擬合結(jié)果可高達(dá)5.4像素。然而,實(shí)際圖像很少出現(xiàn)如噪聲水平為10.0的模擬圖像般的低質(zhì)量情況,該設(shè)置下引入的噪聲已類似椒鹽噪聲。在更為現(xiàn)實(shí)的噪聲水平范圍(0-2之間)下,算法能夠產(chǎn)生合理的結(jié)果。

結(jié)果顯示,算法在處理像散圖像時存在困難,這類圖像在x和y方向上的模糊程度不等。因此,幅度譜中的圓形結(jié)構(gòu)會扭曲為橢球體,并可能根據(jù)像散方向發(fā)生旋轉(zhuǎn)。SIRAF的當(dāng)前版本未考慮這種扭曲效應(yīng),因此在使用SIRAF評估圖像分辨率時,確保像散程度可忽略至關(guān)重要。

SIRAF算法的另一個局限性在于處理具有重復(fù)圖案(如晶格條紋)的圖像。這類圖案會在幅度譜中產(chǎn)生明確的亮點(diǎn),干擾徑向分組過程。雖然可通過簡單遮罩移除大部分亮點(diǎn),但仍可能對分辨率估計(jì)精度產(chǎn)生輕微影響。作為替代方案,SIRAF提供手動擬合選項(xiàng),允許用戶手動調(diào)整擬合參數(shù),以應(yīng)對FFT中的衍射點(diǎn)等特殊情況。

真實(shí)的SEM圖像評估

為測試自動聚焦應(yīng)用,在Au/C樣品同一位置采集了不同焦點(diǎn)的SE圖像系列,失焦程度用相對工作距離(WD)表示。圖4顯示了三張不同焦點(diǎn)設(shè)置的圖像及相應(yīng)擬合結(jié)果。

b6c91b70-72ad-11f0-a18e-92fbcf53809c.jpg

圖4. (a–c)在不同聚焦設(shè)置下獲得的沉積在TEM載網(wǎng)上的金顆粒的SEM圖像。最清晰的圖像顯示在(a)中,從左到右離焦程度逐漸增加。(d)振幅相對于歸一化頻率的曲線圖,以及SIRAF的擬合結(jié)果。(e)每個獲得的SEM圖像的SMART算法(紅色)和SIRAF算法(藍(lán)色)擬合的半高全寬(FWHM)相對于離焦的曲線圖,離焦用相對于焦點(diǎn)的工作距離表示。SMART算法的誤差棒為同一用戶連續(xù)三次運(yùn)行的標(biāo)準(zhǔn)偏差。

圖4a為最清晰圖像,可分辨幾十納米的小顆粒;隨失焦程度增加(WD下降36μm),圖4b中小顆粒不再可見,圖4c中連100nm的大顆粒也無法分辨。實(shí)際數(shù)據(jù)擬合效果不如合成數(shù)據(jù),主要因?yàn)閿M合表達(dá)式過于簡單,且假設(shè)模糊僅由高斯PSF引起。對于高度失焦圖像,艾里斑圖案顯示菲涅耳環(huán),高斯函數(shù)無法解釋。盡管如此,所有圖像都產(chǎn)生了合理擬合(r2值0.95-0.98)。

圖4e顯示FWHM與WD呈V形關(guān)系,最清晰圖像位于最小值處,適用于自動聚焦。SIRAF與SMART算法結(jié)果高度一致,差異通常小于單個像素,但SIRAF無需用戶輸入。

算法還在5k-100k倍率下測試(像素分辨率57.8-2.9 nm/像素)。結(jié)果顯示所有焦點(diǎn)序列均呈V形,隨倍率增加V形變窄。關(guān)鍵發(fā)現(xiàn)是以nm為單位的FWHM在倍率超過25k時不再改善,表明出現(xiàn)空放大,算法可用于確定最佳倍率。

b6dce86c-72ad-11f0-a18e-92fbcf53809c.jpg

圖5.左圖:使用SIRAF獲得的以像素為單位的擬合FWHM值,針對在5k、10k、25k、50k和100k放大倍數(shù)下進(jìn)行的五個不同焦點(diǎn)序列,與相對工作距離的關(guān)系圖。右圖:與左圖相同的數(shù)據(jù),但通過乘以像素分辨率將像素單位轉(zhuǎn)換為納米單位。

最后在多種顯微鏡技術(shù)(SE/BSE、STEM、HAADF-STEM、明場TEM、光學(xué)顯微鏡)上測試了算法通用性。測試樣品包括NaCl晶體、纖維、乳膠珠、納米管等沉積在不同基底上的顆粒。所有情況下均產(chǎn)生高質(zhì)量擬合,僅在具有晶格條紋的TEM圖像上失效,但這類圖像易識別且可通過遮罩或手動擬合處理。

結(jié)論

本文提出了基于FFT的SIRAF算法,通過將理論函數(shù)擬合到徑向平均FFT幅度譜來評估圖像空間分辨率。該算法基于強(qiáng)度躍遷可用被高斯PSF模糊的階躍函數(shù)描述這一假設(shè),在碳基底金納米球的合成和真實(shí)SEM圖像上得到驗(yàn)證。

測試表明算法在大多數(shù)條件下能提供準(zhǔn)確的FWHM估計(jì),但在極端噪聲、像散和重復(fù)模式下性能會下降。該算法可用于自動聚焦和放大倍數(shù)優(yōu)化,并在多種顯微技術(shù)(包括SEM、STEM、TEM和光學(xué)顯微鏡)中表現(xiàn)出高質(zhì)量擬合效果。

總體而言,SIRAF算法具有通用性強(qiáng)、全自動、無用戶偏差等特點(diǎn),為電鏡圖像分辨率評估提供了重要工具。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 分辨率
    +關(guān)注

    關(guān)注

    2

    文章

    1091

    瀏覽量

    43128
  • 納米
    +關(guān)注

    關(guān)注

    2

    文章

    719

    瀏覽量

    40842
  • 掃描電鏡
    +關(guān)注

    關(guān)注

    0

    文章

    118

    瀏覽量

    9700

原文標(biāo)題:掃描電鏡圖像分辨率評估新方法(SIRAF)

文章出處:【微信號:bdtdsj,微信公眾號:中科院半導(dǎo)體所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    鎢燈絲掃描電鏡VEGA的配置如何?

    ,清晰的數(shù)字化圖像,成熟的操作軟件,用戶界面友好等特征?;赪indows?平臺,VEGA系列的操作系統(tǒng)配置了包括中文在內(nèi)的多語種掃描電鏡操作界面(使用核心漢化操作軟件的掃描電鏡),獲取圖片后可以用
    發(fā)表于 05-16 16:04

    [干貨]有效減少掃描電鏡荷電效應(yīng)的幾種方法

    分辨率高、景深好和操作簡單等特點(diǎn)在化工、材料、刑偵等領(lǐng)域都有著廣泛的應(yīng)用。1、什么是荷電效應(yīng)在掃描電鏡測試過程中,會出現(xiàn)因樣品荷電效應(yīng)而導(dǎo)致圖像模糊不清,影響觀察結(jié)果的現(xiàn)象。那么什么是荷電效應(yīng)呢?荷電
    發(fā)表于 06-28 11:13

    影響掃描電鏡(SEM)的幾大要素?

    ~20,000倍,介于光學(xué)顯微鏡和透射電鏡之間,即掃描電鏡彌補(bǔ)了光學(xué)顯微鏡和透射電鏡放大倍數(shù)的空擋。景深 景深是指焦點(diǎn)前后的一個距離范圍,該范圍內(nèi)所有物點(diǎn)所成的圖像符合
    發(fā)表于 07-26 16:54

    掃描電鏡圖像中電壓反差影響研究

    掃描電鏡圖像中電壓反差影響研究
    發(fā)表于 02-14 16:42 ?15次下載

    掃描電鏡圖像中電壓反差影響的研究

    本文詳細(xì)介紹了掃描電鏡圖像中電壓發(fā)差的影響。
    發(fā)表于 11-08 18:50 ?11次下載
    <b class='flag-5'>掃描電鏡</b><b class='flag-5'>圖像</b>中電壓反差影響的研究

    LED芯片觀察(掃描電鏡)SEM失效分析

    圖1 LED芯片(掃描電鏡SEM) 圖2 LED芯片(掃描電鏡SEM) 圖3 LED芯片(掃描電鏡SEM) ? ymf
    發(fā)表于 11-24 11:02 ?2498次閱讀
    LED芯片觀察(<b class='flag-5'>掃描電鏡</b>)SEM失效分析

    LED切片掃描電鏡分析

    LED芯片粘結(jié)不牢(掃描電鏡SEM) LED芯片粘結(jié)錯位(掃描電鏡SEM) 冷熱沖擊后,銀膠開裂(掃描電鏡SEM) ? ? ? ? ? ? ?ymf
    發(fā)表于 11-24 10:59 ?1752次閱讀
    LED切片<b class='flag-5'>掃描電鏡</b>分析

    鎢燈絲掃描電鏡的“王者”是怎么誕生的?

    鎢燈絲掃描電鏡性價比高、易于維護(hù)、操作相對簡單、對場地要求較小便于大眾使用但長期以來鎢燈絲掃描電鏡分辨率都停滯不前難以實(shí)現(xiàn)用戶對更高分辨率的追求國儀量子于近日推出的鎢燈絲
    的頭像 發(fā)表于 12-09 11:14 ?1699次閱讀
    鎢燈絲<b class='flag-5'>掃描電鏡</b>的“王者”是怎么誕生的?

    廣東全自動SEM掃描電鏡的原理和構(gòu)造

    廣東全自動SEM掃描電鏡是一種高分辨率的顯微鏡,通過掃描樣品表面并利用電子信號生成圖像。它與傳統(tǒng)光學(xué)顯微鏡不同,能夠提供更高的放大倍數(shù)和更好的表面細(xì)節(jié)。以下是廣東全自動SEM
    的頭像 發(fā)表于 10-31 15:12 ?1603次閱讀
    廣東全自動SEM<b class='flag-5'>掃描電鏡</b>的原理和構(gòu)造

    掃描電鏡為什么分辨率高,景深大,立體感強(qiáng)?

    掃描電子顯微鏡是金屬科研工作中應(yīng)用最廣泛的“神器”。可以說,幾乎每一個研究生都把自己最重要的科研經(jīng)歷花在了身上。今天的我們就來介紹一下掃描電鏡的原理和應(yīng)用。 電子顯微鏡利用電子產(chǎn)生圖像,類似于光學(xué)
    的頭像 發(fā)表于 01-17 09:39 ?1997次閱讀

    掃描電鏡是用來測什么的

    CEM3000臺式掃描電鏡具備高分辨率、快速抽放氣、大樣品倉、高抗振防磁等特點(diǎn),適用于微觀形貌觀測和元素分析,適用于材料科學(xué)、生物樣本等領(lǐng)域,具備廣泛的應(yīng)用前景。
    發(fā)表于 10-10 11:44 ?0次下載

    臺式掃描電鏡:微觀尺度形貌觀測和分析利器

    臺式掃描電鏡緊湊靈活,高分辨率成像,快速抽放氣,高易用性,大樣品倉,高抗振防磁,可選低真空系統(tǒng),豐富技術(shù)參數(shù),適應(yīng)多領(lǐng)域科研需求,如材料科學(xué)與生物醫(yī)療。臺式掃描電鏡不像傳統(tǒng)的大型掃描電鏡
    發(fā)表于 11-05 11:05 ?0次下載

    場發(fā)射掃描電鏡(FESEM)與常規(guī)掃描電鏡(SEM):技術(shù)對比及優(yōu)勢分析

    場發(fā)射掃描電鏡與SEM的比較及優(yōu)勢在微觀世界的研究中,掃描電鏡(SEM)一直是科學(xué)家們探索材料表面和內(nèi)部結(jié)構(gòu)的重要工具。隨著技術(shù)的進(jìn)步,場發(fā)射掃描電鏡(FESEM)以其卓越的性能,成為了SEM家族中
    的頭像 發(fā)表于 11-21 14:36 ?1746次閱讀
    場發(fā)射<b class='flag-5'>掃描電鏡</b>(FESEM)與常規(guī)<b class='flag-5'>掃描電鏡</b>(SEM):技術(shù)對比及優(yōu)勢分析

    如何選擇掃描電鏡分辨率?

    選擇掃描電鏡分辨率需要綜合考慮多個因素。首先是研究目的。如果只是需要對樣品的大致形貌進(jìn)行觀察,例如查看較大顆粒的分布或者材料表面的宏觀缺陷,較低分辨率(如3-10nm)可能就足夠了。但如果要觀察
    的頭像 發(fā)表于 12-25 14:29 ?1005次閱讀
    如何選擇<b class='flag-5'>掃描電鏡</b>的<b class='flag-5'>分辨率</b>?

    掃描電鏡有哪些作用?

    掃描電鏡作為一種用于微觀結(jié)構(gòu)分析的重要儀器,在材料科學(xué)、生命科學(xué)、地質(zhì)科學(xué)、電子信息等多個領(lǐng)域都有重要作用。它具有以下顯著特征:1.高分辨率成像:能夠清晰呈現(xiàn)樣品表面的細(xì)微結(jié)構(gòu),分辨率可達(dá)納米級
    的頭像 發(fā)表于 02-12 14:42 ?1456次閱讀
    <b class='flag-5'>掃描電鏡</b>有哪些作用?