chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

有效降低傳導輻射干擾最全小技巧

電子設計 ? 來源:互聯網 ? 作者:佚名 ? 2018-06-29 09:30 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

一直以來,設計中的電磁干擾(EMI)問題十分令人頭疼,尤其是在汽車領域。為了盡可能的減小電磁干擾,設計人員通常會在設計原理圖和繪制布局時,通過降低高di / dt的環(huán)路面積以及開關轉換速率來減小噪聲源。

但是,有時無論布局和原理圖的設計多么謹慎,仍然無法將傳導EMI降低到所需的水平。這是因為噪聲不僅取決于電路寄生參數,還與電流強度有關。另外,開關打開和關閉的動作會產生不連續(xù)的電流,這些不連續(xù)電流會在輸入電容上產生電壓紋波,從而增加EMI。

因此,有必要采用一些其他方法來提高傳導EMI的性能。本文主要討論的是引入輸入濾波器來濾除噪聲,或增加屏蔽罩來鎖住噪聲。

圖1 EMI濾波器示意簡圖

圖1是一個簡化的EMI濾波器,包括共模(CM)濾波器和差模(DM)濾波器。 通常,DM濾波器主要用于濾除小于30MHz的噪聲(DM噪聲),CM濾波器主要用于濾除30MHz至100MHz的噪聲(CM噪聲)。 但其實這兩個濾波器對于整個頻段的EMI噪聲都有一定的抑制作用。

圖2顯示了一個不帶濾波器的輸入引線噪聲,包括正向噪聲和負向噪聲,并標注了這些噪聲的峰值水平和平均水平。 其中,該被測系統(tǒng)主要采用芯片LMR14050SSQDDARQ1輸出5V/5A,并給后續(xù)芯片TPS65263QRHBRQ1供電,同時輸出1.5V/3A,3.3V/2A以及1.8V/2A。 這兩個芯片都工作在2.2MHz的開關頻率下。 另外,圖中顯示的傳導EMI標準是CISPR25 Class 5(C5)。有關該系統(tǒng)的更多信息,請查閱應用筆記SNVA810。

圖2 C5標準下的噪聲特性(無濾波器)

圖3顯示了增加一個DM濾波器后的EMI結果。 從圖中可以看出,DM濾波器衰減了中頻段DM噪聲(2MHz至30MHz)近35dBμV/ m。此外高頻段噪聲(30MHz至100MHz)也有所降低,但仍超過限制水平。這主要是因為DM濾波器對于高頻段CM噪聲的濾除能力有限。

圖3 C5標準下的噪聲特性(帶DM濾波器)

圖4顯示了增加CM和DM濾波器后的噪聲特性。 與圖3相比,CM濾波器的增加降低了近20dBμV/ m的CM噪聲。 并且EMI性能也通過了CISPR25 C5標準。

圖4 C5標準下的噪聲特性(帶CM和DM濾波器)

圖5顯示了不同布局下帶CM和DM濾波器的噪聲特性,其中濾波器與圖4相同。但與圖4相比,整個頻段的噪聲增加了大約10dBμV/ m,高頻噪聲甚至還超出CISPR25 C5標準的平均值。

圖5 C5標準下的噪聲特性(帶CM和DM濾波器,不同布局)

圖4和圖5之間噪聲結果的不同主要是由于PCB布線差異所致,如圖6所示。圖5的布線中(圖6的右側),大面積覆銅(GND)包圍著DM濾波器,并和Vin走線形成了一些寄生電容。 這些寄生電容為高頻信號旁路濾波器提供了有效的低阻抗路徑。 因此,為了最大限度地提高濾波器的性能,需要移除濾波器周圍所有的覆銅,如圖6左側的布線。

圖6 不同的PCB布線

除了增加濾波器外,另一種優(yōu)化EMI性能的有效方法是增加屏蔽罩。 這是因為連接著GND的金屬屏蔽罩可以阻止噪聲向外輻射。 圖7推薦了一種屏蔽罩的擺放方法。該屏蔽罩恰好覆蓋了板上所有的元器件。

圖8顯示了增加濾波器和屏蔽罩之后的EMI結果。 如圖所示,整個頻段的噪聲幾乎都被屏蔽罩消除,EMI性能非常好。 這主要是因為等效為天線的長輸入引線會耦合大量輻射噪聲,而屏蔽罩恰好隔絕了它們。在本設計中,中頻噪聲也會采用這種方式耦合到輸入引線上。

圖7 帶屏蔽罩的PCB 3D模型

圖8 C5標準下的噪聲特性(帶CM,DM濾波器以及屏蔽罩)

圖9也顯示了帶濾波器和屏蔽罩的噪聲特性。與圖8 不同的是,圖9中屏蔽罩是一個金屬盒,它包裹了整個電路板,且只有輸入引線裸露在外面。 雖然有了這個屏蔽罩,但一些輻射噪聲仍然可以繞過EMI濾波器并耦合到PCB上的電源線,這將會導致比圖8更差的噪聲特性。有趣的是,圖4,圖8和圖9中(相同的布局布線)高頻帶的噪聲特性幾乎相同。 這是因為在增加EMI濾波器后,能耦合到輸入線上的高頻段輻射噪聲幾乎已經不存在了。

圖9 C5標準下的噪聲特性(帶CM,DM濾波器以及屏蔽金屬盒)

綜合來說,增加EMI濾波器或者屏蔽罩都能有效的改善EMI性能。但是與此同時,濾波器的布局布線以及屏蔽罩的擺放位置需要仔細斟酌。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯系本站處理。 舉報投訴
  • 濾波器
    +關注

    關注

    162

    文章

    8207

    瀏覽量

    184042
  • 耦合
    +關注

    關注

    13

    文章

    603

    瀏覽量

    102349
  • 電磁
    +關注

    關注

    15

    文章

    1181

    瀏覽量

    53412
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    如何降低電磁干擾對電能質量在線監(jiān)測裝置精度的影響?

    降低電磁干擾(EMI)對電能質量在線監(jiān)測裝置精度的影響,需構建 “ 硬件屏蔽 + 濾波抑制 + 接地優(yōu)化 + 軟件補償 + 環(huán)境隔離 ” 的立體防護體系,針對干擾的 “輻射”“
    的頭像 發(fā)表于 10-10 17:59 ?369次閱讀
    如何<b class='flag-5'>降低</b>電磁<b class='flag-5'>干擾</b>對電能質量在線監(jiān)測裝置精度的影響?

    南柯電子|現場解決EMC電磁輻射干擾:&quot;雷區(qū)&quot;讓90%的人栽在接地

    南柯電子|現場解決EMC電磁輻射干擾:"雷區(qū)"讓90%的人栽在接地
    的頭像 發(fā)表于 09-25 09:38 ?293次閱讀

    如何降低電能質量在線監(jiān)測裝置對傳導干擾的敏感度?

    降低電能質量在線監(jiān)測裝置對傳導干擾的敏感度,核心是通過 **“硬件抗擾增強、電路隔離優(yōu)化、濾波防護強化、軟件補償輔助”** 四大維度,從裝置自身設計層面提升抗干擾能力,減少
    的頭像 發(fā)表于 09-24 18:26 ?382次閱讀

    EMC電磁輻射干擾整改:6G時代新挑戰(zhàn),從失敗到1次通過

    南柯電子|EMC電磁輻射干擾整改:6G時代新挑戰(zhàn),從失敗到1次通過
    的頭像 發(fā)表于 09-24 15:21 ?232次閱讀

    如何抑制傳導干擾對電能質量在線監(jiān)測裝置測量精度的影響?

    抑制傳導干擾對電能質量在線監(jiān)測裝置測量精度的影響,需針對傳導干擾的 三大核心路徑(電源線、采樣信號線、接地環(huán)路) 和 兩種干擾類型(差模、共
    的頭像 發(fā)表于 09-19 17:08 ?454次閱讀
    如何抑制<b class='flag-5'>傳導</b><b class='flag-5'>干擾</b>對電能質量在線監(jiān)測裝置測量精度的影響?

    現場解決EMC電磁輻射干擾:降輻射,查路徑,鎖源頭

    南柯電子|現場解決EMC電磁輻射干擾:降輻射,查路徑,鎖源頭
    的頭像 發(fā)表于 09-16 09:59 ?326次閱讀

    現場解決EMC電磁輻射干擾:“望聞問切”,像中醫(yī)一樣

    南柯電子|現場解決EMC電磁輻射干擾:“望聞問切”,像中醫(yī)一樣
    的頭像 發(fā)表于 09-04 09:47 ?316次閱讀

    怎樣有效的規(guī)避電磁干擾

    的,前端數字化的抗干擾策略就是從切斷傳播途徑著手,無論是傳播途徑的傳導騷擾還是輻射騷擾,基于光纖的前端數字化技術均可以有效的切斷傳播途徑,實現電磁兼容。 也許有人還會問,電磁
    的頭像 發(fā)表于 08-18 13:17 ?331次閱讀

    傳導輻射干擾的定位與破解

    電源傳導輻射干擾分析一、傳導干擾分析與整改案例1.傳導干擾基礎
    的頭像 發(fā)表于 05-23 09:10 ?758次閱讀
    <b class='flag-5'>傳導</b><b class='flag-5'>輻射干擾</b>的定位與破解

    EMI(干擾)和EMS(抗擾)基礎知識與整改流程

    )、CE(產品傳導干擾)、Harmonic(諧波)、Ficker(閃爍)。其中關鍵測試指標RE和CE分別為傳導噪聲(Conducted Emission)和輻射噪聲(Radiated
    發(fā)表于 03-28 13:28

    開關電源傳導發(fā)射和輻射發(fā)射的產生原因及解決對策

    開關電源來說,由于開關管、整流管工作在大電流、高電壓的條件下,對外界會產生很強的電磁干擾,因此開關電源的傳導發(fā)射和電磁輻射發(fā)射相對其它產品來說更加難以實現電磁兼容,但如果我們對開關電源產生電磁
    發(fā)表于 03-07 15:31

    開關電源PCB板的EMI抑制與抗干擾設計

    設計,如果這部分設計不當,也會導致電源工作不穩(wěn)定,產生過量的EMI(電磁干擾)。 1 EM1分類及產生原因 1.1 EM1分類 對于電磁干擾(EMI),可以按照電磁干擾傳播的途徑分為輻射干擾
    的頭像 發(fā)表于 01-17 10:35 ?3980次閱讀
    開關電源PCB板的EMI抑制與抗<b class='flag-5'>干擾</b>設計

    用于測量和分離總傳導輻射中的CM噪聲和DM噪聲的方法

    開關穩(wěn)壓器的EMI分為電磁輻射傳導輻射(CE)。 本文重點討論傳導輻射,其可進一步分為兩類:共模(CM)噪聲和差模(DM)噪聲。 為什么要
    的頭像 發(fā)表于 01-09 16:15 ?742次閱讀

    電磁干擾與電磁輻射的區(qū)別 EMI電磁干擾與電力系統(tǒng)的關系

    )與電磁輻射的區(qū)別 定義 電磁干擾(EMI)是指由于電磁能量的傳播,導致設備或系統(tǒng)性能下降的現象。它通常是由外部電磁場引起的,這些場可能來自于其他電子設備、電力線或自然現象。電磁干擾可以是傳導
    的頭像 發(fā)表于 11-20 14:51 ?1675次閱讀

    EMI測量模式

    當電子設備存在突然變化的電壓或電流,便會產生交變的電磁場,從空間輻射或導體傳導傳輸出去,影響到周邊其他的電子設備。電磁干擾的測量通常分為傳導干擾
    的頭像 發(fā)表于 10-23 16:16 ?1131次閱讀
    EMI測量模式