chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

AS三部曲之二 | TSN同步運行機制:多級設備同步如何避免誤差累積?

虹科智能自動化 ? 2025-09-25 17:32 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群


引言

時間敏感網絡(TSN)要求所有設備在納秒級精度下協(xié)調工作。AS同步通過建立統(tǒng)一的時間基準,確保關鍵數據(如工業(yè)控制、自動駕駛指令)在嚴格時間窗口內傳輸,避免因時鐘偏差引發(fā)系統(tǒng)故障。在上一篇(AS三部曲之一:如何理解TSN同步概念中的時鐘角色?)中,我們詳細介紹了IEEE 802.1AS標準作為IEEE 1588 PTP協(xié)議的特定應用規(guī)范,在時間敏感網絡(TSN)中實現(xiàn)納秒級高精度時鐘同步的基礎概念與核心機制。


在掌握了AS的基礎概念之后,深入理解其內部的同步運行機制是解鎖其強大能力的關鍵。理解AS同步機制,不僅是掌握TSN技術精髓的核心,更是設計高可靠性實時系統(tǒng)的基石。它解決了分布式系統(tǒng)中“時間一致性”的根本問題,為未來自動駕駛、工業(yè)4.0、元宇宙等低延遲高同步需求場景提供關鍵技術支撐。

* 不想逐字讀長文?點擊收聽本文播客


01.

同步報文

gPTP (廣義精確時間協(xié)議) 是IEEE 802.1AS標準定義的核心協(xié)議,它源于IEEE 1588 PTP,但為時間敏感網絡(TSN)進行了優(yōu)化,旨在實現(xiàn)亞微秒級的時間同步。其同步過程主要依賴于以下報文類型的交互:

930a58b8-99f2-11f0-8ce9-92fbcf53809c.png


事件報文

時間概念報文,進出設備端口時會打上精確的時間戳,用于計算主從時鐘之間的時間偏移和路徑延遲。事件報文包含以下4種:

Sync、Delay_Req、Pdelay_Req和Pdelay_Resp。


通用報文

非時間概念報文,進出設備端口時不會打上時間戳,用于主從關系的建立、時間信息的請求和通告。通用報文包含以下6種:

Announce、Follow_Up、Delay_Resp、Pdelay_Resp_Follow_Up、Management和Signaling。



02.

同步原理

2.1 同步機制對比

gPTP采用主從設備(Master-Slave)間雙向交互時間同步報文的機制,通過記錄并計算報文收發(fā)的時間戳差值,獲取設備間的總往返時延。在假設雙向傳輸路徑對稱的前提下,將總時延除以2即可估算單向通信延遲,進而推算出從設備相對于主設備的時間偏差。

從設備依據該偏差校準本地時鐘,即可實現(xiàn)與主設備的高精度時間同步。相較于傳統(tǒng)同步協(xié)議如1588v2與NTP,gPTP在實現(xiàn)機制上更接近PTP(精確時間協(xié)議)的局部實現(xiàn)。

9318ce98-99f2-11f0-8ce9-92fbcf53809c.png

NTP協(xié)議通常運行于主控板,其測量的通信時延不僅包含鏈路傳輸時間,還引入了各類內部處理延遲(如隊列擁塞、軟件調度及數據處理等),導致時延波動顯著,且難以保證雙向時延的對稱性,最終限制了時間同步的精度。

PTP1588協(xié)議基于以下假設:鏈路延遲相對穩(wěn)定(或在相鄰同步間隔內變化可忽略),且雙向路徑時延對稱。因此,該協(xié)議通過在物理鏈路兩端最近處標記時間戳以測量鏈路時延,從而實現(xiàn)了較高的同步精度。


PTP1588協(xié)議進一步定義了兩類時延測量與同步方式:

□ Delay機制:適用于端到端路徑的時延測量

□ Pdelay機制:用于在兩個支持該功能的通信端口之間直接測量端口到端口的傳播時延(即鏈路延遲),此過程與端口的主從角色無關

gPTP的同步過程通常遵循經典的PTP延遲請求-響應機制,習慣性沿用Pdelay機制,作為重要區(qū)別,gPTP要求(或強烈推薦)在網絡的物理層(PHY)或MAC層對PTP報文打上時間戳,而不是在操作系統(tǒng)或應用層。這完全消除了協(xié)議棧處理、中斷延遲、系統(tǒng)調度等帶來的不可控抖動。



2.2 同步原理

矯正對時原理

為了更深入理解同步原理的過程,我們從PTP1588這個協(xié)議出發(fā)介紹不同方式下的同步機理,然后通過實驗驗證gPTP的結果,證明其采用了何種方式。

932a7bfc-99f2-11f0-8ce9-92fbcf53809c.png

在同步網絡設備中,當報文發(fā)出或抵達時,會依據設備本地時鐘為其標記時間戳。在一步(One-Step)模式下,延遲測量機制所使用的同步(Sync)報文會直接攜帶其自身的發(fā)送時刻信息。而在兩步(Two-Step)模式下,同步報文本身并不包含發(fā)送時間戳,設備僅記錄該報文的實際發(fā)送時刻,并通過隨后發(fā)出的Follow_Up報文傳遞這一時間信息。

主設備于t1時刻發(fā)出Sync報文。若其工作在one-step模式,該報文中會直接攜帶時間戳t1;若為two-step模式,則t1將在后續(xù)的Follow_Up報文中發(fā)送。

從設備在t2時刻收到Sync報文。在one-step模式下,t1可從該報文中直接提??;在two-step模式下,需等待接收Follow_Up報文以獲取t1。

從設備于t3時刻向主設備發(fā)送Delay_Req報文。

主設備在t4時刻接收到該Delay_Req報文。

√ 主設備通過Delay_Resp報文將時間戳t4傳送至從設備。


基于所獲得的t1、t2、t3、t4四個時間戳,從設備可計算出主從設備間的平均路徑延遲(Delay)及時鐘偏差(Offset),進而校準自身時鐘,實現(xiàn)與主設備的精確同步。具體計算原理如下:

9339515e-99f2-11f0-8ce9-92fbcf53809c.png

需要注意的是:結果的精度取決于時間戳的精度。它們應盡可能準確地反映發(fā)送和接收時間。從設備的偏移量和延遲計算是基于在兩個不同地方獲取的時間戳的差異。因此,兩個時鐘應使用相同的刻度,即相同的tic間隔。這是通過漂移補償實現(xiàn)的:從屬時鐘速率通過控制環(huán)路加速或減慢。稍微不同的抽動間隔會降低結果。


設備通過協(xié)議計算出本地時鐘與主時鐘源之間的時間偏差,并依此對本地時鐘進行校準。這一持續(xù)且周期性的同步機制,保證了從設備能夠始終與主時鐘保持精確的時間同步。

根據上述工作機制,精確的時間同步依賴于主時鐘(Master)與從時鐘(Slave)之間傳輸路徑的時延對稱性。若雙向傳輸時延存在差異,將導致同步偏差,其數值等于上行與下行時延差值的一半。因此,實現(xiàn)高精度時間同步的核心在于確保節(jié)點間時延保持穩(wěn)定、避免抖動。盡管鏈路傳播時延通常較為一致,但設備節(jié)點處的處理時延往往波動較大。

為此,在IEEE相關標準協(xié)議中,通過引入校正字段(correctionField)參與延遲計算,能夠有效補償時延不對稱性,從而更準確地估計平均路徑時延(Delay)與時鐘偏移量(Offset)。

93495216-99f2-11f0-8ce9-92fbcf53809c.png

如圖轉發(fā)時延校正處理,在設備的入口與出口端口,系統(tǒng)會依次對報文中的correctionField字段進行時間補償:入口階段減去當前時間戳,出口階段則加上相應時間戳。這一處理機制實際上相當于將報文在當前設備內部的轉發(fā)時延值累積至校正字段(correctionField)中。


轉發(fā)中繼類型

端到端

端到端透明時鐘更新與單個數據包傳輸相關的延遲的時間間隔字段。從設備通過端到端的延遲請求/延遲響應消息交換來測量到主站的延遲。端到端延遲測量的基本操作如下圖所示:

935ba4ca-99f2-11f0-8ce9-92fbcf53809c.png


點對點

對等透明時鐘測量與入口傳輸路徑相關的線路延遲,并將此延遲也包括在校正字段中。TC使用Pdelay-Req/Pdelay-Resp消息測量到所有相鄰時鐘的鏈路延遲。對等透明時鐘可以允許在網絡拓撲更改后更快地重新配置。點對點延遲測量的基本操作如下圖所示:

93699c4c-99f2-11f0-8ce9-92fbcf53809c.png

需要注意的是:IEEE 802.1AS網橋傳輸同步的方式非常相似,事實上,在數學上等同于IEEE 1588對等透明時鐘(TC)傳輸同步的方式。

每座橋測量相對于其鄰居的頻率偏移;相對于GM的累積頻率偏移以及從端口上同步消息到達與主端口上后續(xù)同步消息發(fā)送之間的時間差用于構造放置在后續(xù)消息中的同步時間。此外,相鄰網橋和/或終端站之間的傳播延遲是使用對等延遲機制測量的。


03.

AS同步機制測試

選取三臺交換機作為測試設備,兩臺交換機通過時鐘優(yōu)先級方式進行Master和Slave設置,確立時鐘角色,其中一臺交換機作為DUT時間感知中繼器,去傳輸和同步Master和Slave的時鐘。

937c9662-99f2-11f0-8ce9-92fbcf53809c.png


3.1 初始化參數

進入交換機的Web管理頁面,首先確認交換機設備處于出廠配置模式下,即確認AS的參數是否進行過調整。

938fa446-99f2-11f0-8ce9-92fbcf53809c.png


3.2 Mater-DUT-Slave時鐘設置

根據第2節(jié)當中對于BMCA最佳主時鐘選取的規(guī)則,設置IP地址192.168.4.64交換機的時鐘Priority1為100,192.168.4.65交換機的時鐘Priority1為默認248(作為待測DUT),192.168.4.66交換機的時鐘Priority1設置為200,并開啟gPTP的start功能。

此時情況下,4.64交換機的時鐘作為Master存在,4.66交換機作為Slave存在,可以理解為它們作為兩個OC(普通時鐘存在并進行同步)。

4.65交換機作為BC(本質上它也是作為一個Slave時鐘參與同步,并轉發(fā)Master-slave之間的同步報文)。如下設置:

93a11f14-99f2-11f0-8ce9-92fbcf53809c.png

交換機1設置


93b7bdd2-99f2-11f0-8ce9-92fbcf53809c.png

交換機2設置


93cebdac-99f2-11f0-8ce9-92fbcf53809c.png

交換機3設置


93e57178-99f2-11f0-8ce9-92fbcf53809c.png

gPTP(802.1AS)使能開啟


3.3 觀察DUT&Slave同步精度

由第2節(jié)所述,AS同步精度偏移是相對于Master時鐘的偏移量,所以精度誤差主要由Slave計算并獲得偏移結果。在RELY-TSN交換機中我們可以在Slave角色的交換機中觀察相對于Master角色的時鐘偏移量。

虹科合作伙伴SOC-E RelyUm系列

TSN測試方案

93fe9a04-99f2-11f0-8ce9-92fbcf53809c.png


虹科為客戶提供SOC-E RelyUm系列TSN IP核、板卡、TSN交換機、測試套件等一站式解決方案,覆蓋從產品研發(fā)到實際應用的全鏈條。

無論您處于產業(yè)鏈的哪個環(huán)節(jié),是進行新產品研發(fā),還是構建完整的應用網絡,都能在我們這里找到適配的產品與服務,滿足您多樣化的需求。


在本次案例中,由于4.65和4.66的交換機充當Slave(DUT=BC時鐘,Slave=OC時鐘),所以在兩臺交換機的同步打印窗口查看同步精度結果。

首先觀看主時鐘設備的PTP clockID實例,GM clock ID以及GM present布爾值。其中PTP clockID實例為本設備的時鐘源ID、GM clock ID為主時鐘Master ID、GM present為false時表示本設備作為主時鐘源Master設備;為ture時表示本設備作為從時鐘Slave設備(外部存在Master)。同時查看OC時鐘(Master&Slave clock)和BC構建生成的同步樹,即三臺交換機的同步端口狀態(tài)(Master/Slave-port)。

942180be-99f2-11f0-8ce9-92fbcf53809c.png


9431f7b4-99f2-11f0-8ce9-92fbcf53809c.png

Master時鐘狀態(tài)


94448f5a-99f2-11f0-8ce9-92fbcf53809c.png

DUT slave時鐘狀態(tài)


947b98ba-99f2-11f0-8ce9-92fbcf53809c.png

Slave時鐘狀態(tài)


結果顯示,Slave設備(交換機3)的GM clock ID為Mater設備(交換機1)的PTP clockID實例,并且GM present=true,同步精度GM offset為3ns左右。

DUT設備(交換機2)GM clock ID為Mater設備(交換機1)的PTP clockID實例,并且GM present=true,同步精度GM offset為3ns左右。

Master設備(交換機1)的Port-1端口作為Master-port,DUT設備(交換機2)的Port-0端口作為Slave-port,用于和上一極時鐘節(jié)點(交換機1)連接,Port-1端口作為master-port,用于和下一級時鐘節(jié)點進行連接同步。Slave設備(交換機3)的Port-0端口作為slave-port,用于和上一級時鐘節(jié)點(DUT)進行連接同步。整體同步樹與第2節(jié)中描述一致。



3.4 觀察同步報文

利用Slave(交換機3)設備的端口進行端口鏡像,此例中采用port-1進行端口鏡像,對port-0同步端口進行同步報文捕獲。Slave設備開始port-1的鏡像捕獲,捕獲port-0端口的Ingress和Egress幀,如圖所示。

94899870-99f2-11f0-8ce9-92fbcf53809c.png

Slave設備(交換機3)的port-1接入電腦PC,并通過wireshark進行報文捕獲,如圖所示。

949a200a-99f2-11f0-8ce9-92fbcf53809c.png94b6cc78-99f2-11f0-8ce9-92fbcf53809c.png

在捕獲的報文中我們查看用于AS同步的幾條特定報文,Sync,Announce、Follow_Up、Pdelay_Req和Pdelay_Resp、Pdelay_Resp_Follow_Up。

特別說明的是,RELY-TSN交換機采用的是2步法P2P對等延遲計算方式,該方式是指Pdelay方式下的Pdelay_Resp報文,不帶有本報文發(fā)送時刻的時間戳,設備只是記錄Pdelay_Resp報文發(fā)送時的時間,由后續(xù)的Pdelay_Resp_Follow_Up報文帶上Pdelay_Resp報文發(fā)送時刻的時間戳。

Correctionfield的修正值有數值,該測試案例中存在DUT這個邊界時鐘,同步報文在轉發(fā)過程需要進行對等延遲計算和駐留延遲補償等,從而添加到修正報文當中。此外我們還可以在看到用于同步計算的preciseOriginTimestamp (seconds)和preciseOriginTimestamp。


結語.

AS同步機制的成熟,標志著TSN技術在自動駕駛、工業(yè)4.0和元宇宙等領域邁出關鍵一步。其納秒級精度和輕量化架構,解決了“時間一致性”這一分布式系統(tǒng)的根本挑戰(zhàn)。未來,隨著TSN生態(tài)的擴展,AS協(xié)議有望進一步優(yōu)化低延遲高同步需求場景,推動網絡從“盡力而為”向“確定性傳輸”的范式轉變。敬請期待“AS三部曲”終篇,我們將深入解析協(xié)議優(yōu)化與前沿應用。





作者簡介

羅顯志

虹科高級技術工程師,專注TSN技術領域,具有豐富的理論基礎和應用經驗,提供專業(yè)的TSN測試和培訓服務。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • AS
    AS
    +關注

    關注

    0

    文章

    29

    瀏覽量

    26351
  • 時鐘同步
    +關注

    關注

    0

    文章

    122

    瀏覽量

    13257
  • TSN
    TSN
    +關注

    關注

    3

    文章

    280

    瀏覽量

    17742
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    油煙機選購三部曲

    油煙機選購三部曲廚房油煙含有20多萬種有害物質,不僅會致癌,對腸道、大腦神經等也有很大的危害。廚房油煙已成為人體健康的隱形殺手。而肩負清潔廚房油煙的重任,一款好的吸油煙機將為你的生活增色不少
    發(fā)表于 12-22 14:45

    三部曲(全書)

    天嵌的三部曲
    發(fā)表于 07-01 16:41

    冒泡排序法三部曲の一、冒泡排序原理版

    的類型就多進行3x4次排序,為了解決這個問題,對冒泡排序法進行進一步優(yōu)化,將在冒泡排序法三部曲、冒泡排序優(yōu)化中解決這個問題。
    發(fā)表于 09-12 10:30

    冒泡排序法三部曲の冒泡排序原理版(一)

    ;, array[n]);printf("\t");//空格一次}return 0;}運行結果上述代碼沒有問題,但是如果數組是類似{1,2,3,5,4}這樣的類型就多進行3x4次排序,為了解決這個問題,對冒泡排序法進行進一步優(yōu)化,將在冒泡排序法三部曲
    發(fā)表于 09-12 10:42

    冒泡排序法三部曲冒泡排序法的優(yōu)化

    本帖最后由 盧小 于 2019-9-14 11:23 編輯 環(huán)境:VS2017C language在冒泡排序法三部曲の一冒泡排序法的原理之后,其實存在一些可優(yōu)化的問題,首先就是假如是
    發(fā)表于 09-13 12:17

    CPU的基本結構和運行機制

    目錄一. CPU的基本結構和運行機制參考《ARM微控制器與嵌入式系統(tǒng)--清華》一. CPU的基本結構和運行機制分析其中的CPU:(ALU、寄存器組、控制單元是必要的,其他非必要)一個完整的CPU:將
    發(fā)表于 11-03 09:22

    一種消除誤差累積多級快速獨立分量分析算法

    針對傳統(tǒng)串行FastICA 算法存在誤差累積的缺點,該文提出一個多級結構的快速獨立分量分析算法(MSFICA)。該算法采用兩級結構來消除誤差累積
    發(fā)表于 02-10 14:30 ?9次下載

    榮耀Note9什么時候上市?榮耀三部曲華為榮耀Note9即將發(fā)布,配置、渲染圖、價格消息匯總

    喜歡全面屏新機?喜歡大屏手機?那這部6.6英寸的超大屏全面屏手機真的是不容錯過。這就是華為即將發(fā)布的最新旗艦,榮耀三部曲之一的---榮耀Note 9。
    發(fā)表于 08-02 10:16 ?4076次閱讀

    Linux系統(tǒng)的fork運行機制分析

    如果其中一個進程的輸出結果是“pid1:1001, pid2:1002”,寫出其他進程的輸出結果(不考慮進程執(zhí)行順序)。 明顯這道題的目的是考察linux下fork的執(zhí)行機制。下面我們通過分析這個題目,談談Linux下fork的運行機制。
    發(fā)表于 04-26 16:26 ?1340次閱讀
    Linux系統(tǒng)的fork<b class='flag-5'>運行機制</b>分析

    智慧消防落地逃不開的三部曲是哪三部曲

    智慧消防應用落地,只有攻破數據、算法、標準大關鍵問題,后期貼近實戰(zhàn)的產品、場景化應用解決方案等才可能真正行之有效。
    發(fā)表于 07-16 14:55 ?946次閱讀

    SSL和TLS協(xié)議運行機制的資料詳細概述

    聯(lián)網的通信安全,建立在SSL/TLS協(xié)議之本文簡要介紹SSL/TLS協(xié)議的運行機制。文章的重點是設計思想和運行過程,不涉及具體的實現(xiàn)細節(jié)。
    發(fā)表于 07-22 08:00 ?2次下載
    SSL和TLS協(xié)議<b class='flag-5'>運行機制</b>的資料詳細概述

    存儲三部曲的第一——NAS

    目前數據存儲的形態(tài),主要就是SAN、NAS和OBJ這種。作為存儲三部曲的第一,先來說說我最喜歡的NAS。 NAS(Network Attached Storage),網絡附加存儲。簡單的說
    的頭像 發(fā)表于 12-03 14:11 ?3465次閱讀

    存儲三部曲最后一SAN的現(xiàn)狀如何?

    今天分享存儲三部曲的最后一,高冷的SAN。 SAN(Storage Area Network),存儲局域網絡,一種主要基于FC(FibreChannel)的光纖通道存儲技術,用于SAN中的存儲就是
    的頭像 發(fā)表于 12-03 14:15 ?3105次閱讀

    php運行機制和原理

    PHP是一種在服務器端執(zhí)行的腳本語言,它被廣泛用于開發(fā)動態(tài)網站。它的運行機制和原理非常重要,因為它決定了PHP腳本如何被解釋執(zhí)行和與服務器進行交互。 PHP的運行機制 PHP腳本的運行機制涉及到以下
    的頭像 發(fā)表于 12-04 15:28 ?1415次閱讀

    虹科干貨 | AS三部曲之一:如何理解TSN同步概念中的時鐘角色?

    導讀隨著時間同步需求的增長,IRIG-B、LORAN-C、NTP、PTP、GPS同步和SyncE等技術相繼被提出并應用。然而,這些方案要么難以滿足高精度要求,要么實現(xiàn)成本過高,限制了它們在低成本
    的頭像 發(fā)表于 08-13 17:34 ?657次閱讀
    虹科干貨 | AS<b class='flag-5'>三部曲</b>之一:如何理解<b class='flag-5'>TSN</b><b class='flag-5'>同步</b>概念中的時鐘角色?