面向未來電網(wǎng)的SST固態(tài)變壓器:高頻DC-DC變換拓?fù)?、先進(jìn)控制策略與SiC功率模塊應(yīng)用研究報(bào)告

傾佳電子(Changer Tech)是一家專注于功率半導(dǎo)體和新能源汽車連接器的分銷商。主要服務(wù)于中國(guó)工業(yè)電源、電力電子設(shè)備和新能源汽車產(chǎn)業(yè)鏈。傾佳電子聚焦于新能源、交通電動(dòng)化和數(shù)字化轉(zhuǎn)型三大方向,代理并力推BASiC基本半導(dǎo)體SiC碳化硅MOSFET單管,SiC碳化硅MOSFET功率模塊,SiC模塊驅(qū)動(dòng)板等功率半導(dǎo)體器件以及新能源汽車連接器。?
傾佳電子楊茜致力于推動(dòng)國(guó)產(chǎn)SiC碳化硅模塊在電力電子應(yīng)用中全面取代進(jìn)口IGBT模塊,助力電力電子行業(yè)自主可控和產(chǎn)業(yè)升級(jí)!
傾佳電子楊茜咬住SiC碳化硅MOSFET功率器件三個(gè)必然,勇立功率半導(dǎo)體器件變革潮頭:
傾佳電子楊茜咬住SiC碳化硅MOSFET模塊全面取代IGBT模塊和IPM模塊的必然趨勢(shì)!
傾佳電子楊茜咬住SiC碳化硅MOSFET單管全面取代IGBT單管和大于650V的高壓硅MOSFET的必然趨勢(shì)!
傾佳電子楊茜咬住650V SiC碳化硅MOSFET單管全面取代SJ超結(jié)MOSFET和高壓GaN 器件的必然趨勢(shì)!
1. 緒論:電網(wǎng)現(xiàn)代化的核心引擎——固態(tài)變壓器
隨著全球能源結(jié)構(gòu)的深刻變革,分布式可再生能源(DERs)的高比例滲透、電動(dòng)汽車(EV)充電基礎(chǔ)設(shè)施的爆發(fā)式增長(zhǎng)以及直流微電網(wǎng)的興起,傳統(tǒng)電力系統(tǒng)正面臨前所未有的挑戰(zhàn)。在這一背景下,固態(tài)變壓器(Solid State Transformer, SST),亦被稱為電力電子變壓器(Power Electronic Transformer, PET),作為一種能夠替代傳統(tǒng)工頻變壓器(Line Frequency Transformer, LFT)并提供更多智能化功能的關(guān)鍵設(shè)備,正逐漸成為智能電網(wǎng)和能源互聯(lián)網(wǎng)的核心節(jié)點(diǎn) 。

傳統(tǒng)工頻變壓器基于電磁感應(yīng)原理,雖然可靠性高、成本低,但其體積和重量與工作頻率成反比,且缺乏對(duì)電壓、頻率和功率潮流的靈活控制能力。SST通過引入電力電子變換器,利用高頻變壓器(HFT)實(shí)現(xiàn)電氣隔離和電壓變換,不僅大幅減小了體積和重量(體積可減少80%以上),還具備了瞬時(shí)電壓調(diào)節(jié)、無功功率補(bǔ)償、諧波抑制、故障隔離以及交直流混合接口等高級(jí)功能 。
然而,SST的廣泛應(yīng)用面臨著效率、功率密度、可靠性和成本等多重技術(shù)瓶頸。其中,高頻隔離型DC-DC變換級(jí)作為SST的核心能量傳輸通道,其拓?fù)溥x擇和控制策略直接決定了系統(tǒng)的整體性能。同時(shí),以碳化硅(SiC)為代表的寬禁帶(WBG)半導(dǎo)體器件的出現(xiàn),憑借其高耐壓、低導(dǎo)通電阻、高開關(guān)速度和優(yōu)異的高溫特性,為解決SST的效率和熱管理難題提供了革命性的解決方案 。
傾佳電子將從SST的拓?fù)浼軜?gòu)出發(fā),深入剖析高頻DC-DC變換器的技術(shù)細(xì)節(jié)與控制策略,并結(jié)合基本半導(dǎo)體(BASiC Semiconductor)的最新SiC功率模塊產(chǎn)品,全面闡述SiC技術(shù)在提升SST性能方面的應(yīng)用價(jià)值。
2. 固態(tài)變壓器的多級(jí)架構(gòu)與模塊化設(shè)計(jì)
SST的架構(gòu)設(shè)計(jì)需兼顧高壓接入能力、轉(zhuǎn)換效率、控制自由度以及系統(tǒng)的模塊化擴(kuò)展性。目前,三級(jí)式(Three-Stage)架構(gòu)因其解耦的控制能力和豐富的端口特性,被公認(rèn)為最適合配電網(wǎng)應(yīng)用的方案。
2.1 三級(jí)式SST架構(gòu)解析
三級(jí)式SST通常由高壓級(jí)AC-DC整流器、隔離級(jí)DC-DC變換器和低壓級(jí)DC-AC逆變器組成 。

高壓AC-DC級(jí)(整流級(jí)): 該級(jí)直接面對(duì)中高壓電網(wǎng)(如10kV或35kV),負(fù)責(zé)將工頻交流電轉(zhuǎn)換為高壓直流電(HVDC)。其核心任務(wù)是保持網(wǎng)側(cè)電流正弦化(PFC功能),實(shí)現(xiàn)單位功率因數(shù)運(yùn)行,并穩(wěn)定HVDC母線電壓。
隔離DC-DC級(jí)(變換級(jí)): 這是SST的技術(shù)心臟。它將HVDC母線電壓調(diào)制為高頻方波,通過高頻變壓器耦合到副邊,再整流為低壓直流電(LVDC)。該級(jí)不僅提供必要的電氣隔離,還承擔(dān)著電壓匹配和功率流調(diào)節(jié)的任務(wù)。由于工作頻率通常在20kHz至100kHz甚至更高,變壓器磁芯體積得以顯著減小。
低壓DC-AC級(jí)(逆變級(jí)): 將LVDC轉(zhuǎn)換為工頻交流電供給用戶負(fù)載,或作為微網(wǎng)的接口。同時(shí),LVDC母線為分布式光伏、儲(chǔ)能電池和直流充電樁提供了直接接入點(diǎn),極大地簡(jiǎn)化了交直流混合微網(wǎng)的結(jié)構(gòu) 。
2.2 模塊化多電平架構(gòu)(Modular Multilevel Architectures)
面對(duì)中高壓電網(wǎng)的電壓等級(jí)(10kV-35kV),單個(gè)硅基(Si)甚至早期的SiC器件都難以直接承受全部電壓應(yīng)力。雖然10kV/15kV級(jí)的高壓SiC器件正在研發(fā)中 ,但目前商業(yè)化最成熟、成本效益最高的方案是采用基于1200V或1700V器件的模塊化級(jí)聯(lián)架構(gòu)。

2.2.1 輸入串聯(lián)輸出并聯(lián)(ISOP)架構(gòu)
輸入串聯(lián)輸出并聯(lián)(Input-Series Output-Parallel, ISOP)是目前中壓SST中最主流的拓?fù)浣Y(jié)構(gòu) 。
輸入串聯(lián)(Input-Series): 在高壓側(cè),多個(gè)DC-DC變換器模塊的輸入端串聯(lián)連接。每個(gè)模塊分擔(dān)一部分母線電壓(例如,10kV直流母線由10個(gè)模塊串聯(lián)分擔(dān),每個(gè)模塊承受1kV)。這種結(jié)構(gòu)允許使用成熟的1200V或1700V SiC MOSFET,避免了對(duì)昂貴且技術(shù)不成熟的超高壓器件的依賴。
輸出并聯(lián)(Output-Parallel): 在低壓側(cè),所有模塊的輸出端并聯(lián)連接至低壓直流母線(如750V或400V)。這種結(jié)構(gòu)使得各模塊共同分擔(dān)負(fù)載電流,適合大功率應(yīng)用。
ISOP架構(gòu)的優(yōu)勢(shì)在于其高度的模塊化和冗余性。如果某個(gè)模塊發(fā)生故障,可以通過旁路開關(guān)將其切除,其余模塊在降額運(yùn)行的情況下仍能維持系統(tǒng)工作,從而顯著提高了系統(tǒng)的可靠性 。此外,通過載波移相技術(shù),級(jí)聯(lián)的AC-DC級(jí)可以產(chǎn)生多電平階梯波,極大地降低了網(wǎng)側(cè)電流諧波(THD)和濾波電感體積 。
2.2.2 級(jí)聯(lián)H橋(CHB)與模塊化多電平換流器(MMC)
在AC-DC級(jí),級(jí)聯(lián)H橋(Cascaded H-Bridge, CHB)拓?fù)湟蚱浣Y(jié)構(gòu)簡(jiǎn)單、模塊獨(dú)立性強(qiáng)而被廣泛采用。每個(gè)H橋模塊都有獨(dú)立的直流電容,通過隔離DC-DC級(jí)向后級(jí)傳輸功率 。相比之下,模塊化多電平換流器(MMC)雖然在HVDC輸電領(lǐng)域占據(jù)主導(dǎo),但在配網(wǎng)SST應(yīng)用中,CHB結(jié)合ISOP DC-DC的方案因控制相對(duì)簡(jiǎn)單、器件利用率高而更具優(yōu)勢(shì)。
3. 高頻隔離型DC-DC變換器拓?fù)渖疃绕饰?/p>
隔離型DC-DC變換器是SST實(shí)現(xiàn)高頻隔離、電壓匹配和功率調(diào)節(jié)的關(guān)鍵環(huán)節(jié)。在眾多拓?fù)渲?,雙有源橋(Dual Active Bridge, DAB)變換器和LLC諧振變換器是最具競(jìng)爭(zhēng)力的兩種選擇。
3.1 雙有源橋(DAB)變換器:雙向流動(dòng)的基石
DAB變換器自20世紀(jì)90年代提出以來,因其固有的雙向功率流動(dòng)能力、高功率密度和模塊化特性,已成為SST DC-DC級(jí)的首選拓?fù)渲?。

3.1.1 拓?fù)浣Y(jié)構(gòu)與工作原理
典型的DAB拓?fù)溆稍吶珮?、副邊全橋、高頻變壓器以及輔助儲(chǔ)能電感(通常利用變壓器的漏感Lk?)組成。
運(yùn)行機(jī)制: 原邊和副邊全橋均以50%的占空比運(yùn)行,產(chǎn)生高頻方波電壓vp?和vs?。通過控制兩個(gè)方波電壓之間的移相角?,可以在漏感兩端產(chǎn)生壓降,從而控制功率流的大小和方向。
功率傳輸方程: 在單移相(SPS)控制下,傳輸功率P為:
P=2πfsw?Lk?nVin?Vout???(1?π∣?∣?)
其中,n為變壓器變比,fsw?為開關(guān)頻率。
3.1.2 性能特征分析
零電壓開通(ZVS): DAB的一個(gè)顯著優(yōu)勢(shì)是能夠在較寬的負(fù)載范圍內(nèi)實(shí)現(xiàn)開關(guān)管的ZVS,這對(duì)于降低高頻開關(guān)損耗至關(guān)重要。ZVS的實(shí)現(xiàn)依賴于漏感電流在開關(guān)動(dòng)作前對(duì)結(jié)電容的充放電 。
雙向功率流: 由于結(jié)構(gòu)的對(duì)稱性,DAB可以無縫地實(shí)現(xiàn)能量的雙向流動(dòng),這對(duì)于需要V2G(Vehicle-to-Grid)功能的電動(dòng)汽車充電站或儲(chǔ)能接口SST至關(guān)重要 。
局限性: 傳統(tǒng)SPS控制下的DAB在輸入輸出電壓不匹配(即電壓增益k=1)或輕載條件下,會(huì)產(chǎn)生較大的回流功率(Reactive Circulating Power)。回流功率不傳輸能量,但會(huì)增加開關(guān)管的RMS電流和導(dǎo)通損耗,導(dǎo)致效率顯著下降,并可能導(dǎo)致ZVS丟失 。
3.2 LLC諧振變換器:極致效率的追求
LLC諧振變換器利用LC諧振槽路來實(shí)現(xiàn)軟開關(guān),是另一種在SST中備受關(guān)注的拓?fù)?,特別是在單向功率傳輸或?qū)π室髽O高的場(chǎng)合。
3.2.1 拓?fù)渑c諧振特性
LLC拓?fù)浒粋€(gè)諧振電容Cr?、一個(gè)諧振電感Lr?和勵(lì)磁電感Lm?。
軟開關(guān)機(jī)制: LLC變換器可以在全負(fù)載范圍內(nèi)實(shí)現(xiàn)原邊開關(guān)管的ZVS,并在副邊整流二極管實(shí)現(xiàn)零電流關(guān)斷(ZCS),從而幾乎消除了反向恢復(fù)損耗 。
調(diào)頻控制(PFM): 與DAB的移相控制不同,LLC通常通過調(diào)節(jié)開關(guān)頻率來控制電壓增益。當(dāng)工作頻率接近諧振頻率時(shí),效率達(dá)到最高。
3.2.2 DAB與LLC的深度對(duì)比
在SST應(yīng)用場(chǎng)景下,DAB與LLC的優(yōu)劣勢(shì)對(duì)比如下表所示 :
| 特性維度 | 雙有源橋 (DAB) | LLC 諧振變換器 | 對(duì)SST應(yīng)用的影響分析 |
|---|---|---|---|
| 功率流向 | 天然雙向,對(duì)稱結(jié)構(gòu) | 傳統(tǒng)LLC為單向;CLLC可雙向但結(jié)構(gòu)復(fù)雜 | 需要能量雙向流動(dòng)的節(jié)點(diǎn)(如儲(chǔ)能、V2G)首選DAB或CLLC。 |
| 控制變量 | 移相角 (?),定頻控制 | 開關(guān)頻率 (fsw?),變頻控制 | 模塊化SST中,DAB的定頻控制更容易實(shí)現(xiàn)多模塊同步,避免拍頻干擾;LLC變頻控制設(shè)計(jì)更復(fù)雜。 |
| 軟開關(guān)范圍 | 受電壓匹配度k和負(fù)載影響,輕載易失ZVS | 全負(fù)載范圍ZVS (原邊) + ZCS (副邊) | LLC峰值效率更高,但在寬電壓范圍應(yīng)用中設(shè)計(jì)難度大;DAB需結(jié)合先進(jìn)調(diào)制策略優(yōu)化軟開關(guān)。 |
| 電壓調(diào)節(jié)能力 | 較強(qiáng),易于升降壓 | 受限于增益曲線,寬范圍調(diào)節(jié)困難 | DAB更適合電壓波動(dòng)較大的電網(wǎng)環(huán)境。 |
| 元件數(shù)量 | 較少 (利用漏感) | 較多 (需諧振電容) | DAB有利于提高功率密度和可靠性。 |
結(jié)論: 對(duì)于要求雙向流動(dòng)、寬電壓范圍運(yùn)行且易于模塊化擴(kuò)展的SST應(yīng)用,DAB(及其變種CLLC)通常被認(rèn)為是更綜合的解決方案。LLC則更適用于特定工況下對(duì)效率有極致追求的場(chǎng)合。
4. 高頻DAB變換器的先進(jìn)控制策略
為了克服DAB變換器在傳統(tǒng)單移相(SPS)控制下回流功率大、電流應(yīng)力高以及輕載ZVS丟失的問題,學(xué)術(shù)界和工業(yè)界發(fā)展了一系列先進(jìn)的調(diào)制與控制策略。

4.1 多自由度調(diào)制策略 (Advanced Modulation Schemes)
通過引入更多的控制自由度,可以優(yōu)化電流波形,降低損耗 。
擴(kuò)展移相控制(EPS): 在控制內(nèi)外橋間移相角的同時(shí),對(duì)其中一個(gè)全橋引入內(nèi)移相角(Inner Phase Shift),使其輸出三電平電壓波形。EPS可以擴(kuò)大ZVS范圍并降低回流功率,特別是在電壓不匹配時(shí)。
雙重移相控制(DPS): 對(duì)原邊和副邊全橋同時(shí)引入相同的內(nèi)移相角,并控制外移相角。DPS在提高輕載效率方面表現(xiàn)優(yōu)異,且控制邏輯相對(duì)簡(jiǎn)單。
三重移相控制(TPS): 這是DAB控制的終極形式,允許獨(dú)立控制原邊內(nèi)移相角、副邊內(nèi)移相角和外移相角三個(gè)自由度。通過構(gòu)建拉格朗日優(yōu)化函數(shù)或KKT條件,TPS可以在任意運(yùn)行點(diǎn)實(shí)現(xiàn)電流有效值(RMS)最小化或全范圍ZVS 。雖然計(jì)算復(fù)雜度高,但配合現(xiàn)代高性能DSP或FPGA,TPS能最大程度挖掘DAB的潛能。
4.2 基于模型的預(yù)測(cè)控制 (Model Predictive Control, MPC)
傳統(tǒng)的PI控制在處理DAB的非線性特性和多目標(biāo)約束時(shí)往往力不從心。模型預(yù)測(cè)控制(MPC)因其優(yōu)異的動(dòng)態(tài)性能和多變量處理能力,在SST控制中日益受到重視 。
基本原理: MPC利用DAB的離散時(shí)間模型,在每個(gè)開關(guān)周期預(yù)測(cè)未來時(shí)刻的狀態(tài)變量(如電感電流、輸出電壓)。通過定義包含控制目標(biāo)(如電壓跟蹤誤差)和約束條件(如電流限制、軟開關(guān)邊界)的代價(jià)函數(shù),MPC選擇使代價(jià)函數(shù)最小的控制量作用于系統(tǒng)。
移動(dòng)離散控制集MPC (MDCS-MPC): 為了解決傳統(tǒng)有限控制集MPC(FCS-MPC)穩(wěn)態(tài)誤差大和開關(guān)頻率不固定的問題,MDCS-MPC在當(dāng)前工作點(diǎn)附近動(dòng)態(tài)生成候選控制集。這種方法結(jié)合了高動(dòng)態(tài)響應(yīng)和低穩(wěn)態(tài)紋波的優(yōu)點(diǎn),且計(jì)算量適中,非常適合高頻SST應(yīng)用 。
4.3 輸入串聯(lián)輸出并聯(lián)(ISOP)系統(tǒng)的均壓控制
在ISOP架構(gòu)的SST中,確保各串聯(lián)模塊的輸入電壓均衡(Input Voltage Sharing, IVS)是系統(tǒng)穩(wěn)定運(yùn)行的前提。由于器件參數(shù)差異、變壓器漏感不一致或驅(qū)動(dòng)延時(shí),模塊間可能出現(xiàn)電壓失衡,導(dǎo)致個(gè)別模塊過壓擊穿 。
解耦控制策略: 一種有效的策略是將輸出電壓閉環(huán)控制(OVR)與輸入均壓控制(IVS)解耦。
OVR環(huán)路: 產(chǎn)生一個(gè)公共的基準(zhǔn)占空比或移相角,作用于所有模塊,以調(diào)節(jié)總輸出電壓。
IVS環(huán)路: 每個(gè)模塊檢測(cè)自身的輸入電壓與平均輸入電壓的偏差,通過微調(diào)各自的移相角來補(bǔ)償電壓不平衡。例如,電壓偏高的模塊增加移相角以輸出更多功率,從而降低其電容電壓 。
無互聯(lián)通信控制: 為了提高可靠性,一些研究提出了基于下垂控制(Droop Control)的分布式均壓策略,無需模塊間的高速通信即可實(shí)現(xiàn)電壓自動(dòng)平衡,這對(duì)于模塊數(shù)量眾多的SST尤為重要 。
5. SiC功率模塊:SST性能躍升的關(guān)鍵使能技術(shù)
如果說拓?fù)浜涂刂剖荢ST的“大腦”,那么功率半導(dǎo)體器件就是SST的“肌肉”。傳統(tǒng)的硅(Si)基IGBT由于開關(guān)速度慢、反向恢復(fù)損耗大,限制了SST的工作頻率(通常低于5kHz),導(dǎo)致變壓器體積依然龐大。碳化硅(SiC)技術(shù)的成熟,為SST帶來了質(zhì)的飛躍。

5.1 SiC材料特性的系統(tǒng)級(jí)優(yōu)勢(shì)
SiC作為第三代寬禁帶半導(dǎo)體,相比Si材料具有三大核心優(yōu)勢(shì),這些優(yōu)勢(shì)在SST應(yīng)用中被極度放大 :
高臨界擊穿場(chǎng)強(qiáng)(10倍于Si): 允許在更薄的漂移層上實(shí)現(xiàn)高耐壓。這意味著同等電壓等級(jí)下,SiC MOSFET的導(dǎo)通電阻(RDS(on)?)顯著降低,且不需要像IGBT那樣采用雙極性調(diào)制(消除拖尾電流)。應(yīng)用價(jià)值: 極低的導(dǎo)通損耗使得SST在高負(fù)載下仍能保持高效率,減少散熱需求。
高電子飽和漂移速度(2倍于Si): 支持極高的開關(guān)速度。SiC MOSFET的開關(guān)過程主要受限于寄生電容充放電,幾乎沒有少子存儲(chǔ)效應(yīng)。應(yīng)用價(jià)值: SST的開關(guān)頻率可從Si時(shí)代的數(shù)kHz提升至20kHz-100kHz甚至更高。根據(jù)變壓器體積公式 V∝1/f,頻率提升10倍意味著變壓器體積可減小近90%,這是實(shí)現(xiàn)SST高功率密度的物理基礎(chǔ) 。
高熱導(dǎo)率(3倍于Si): SiC材料散熱能力極強(qiáng),且能在更高結(jié)溫(Tvj?≥175°C)下穩(wěn)定工作。應(yīng)用價(jià)值: 簡(jiǎn)化了SST的散熱系統(tǒng)設(shè)計(jì),提高了系統(tǒng)的過載能力和惡劣環(huán)境適應(yīng)性。
5.2 基本半導(dǎo)體(BASiC Semiconductor)SiC模塊的應(yīng)用價(jià)值分析
結(jié)合用戶提供的BASiC Semiconductor產(chǎn)品數(shù)據(jù)手冊(cè),我們可以具體分析高性能SiC模塊如何賦能SST設(shè)計(jì)。





5.2.1 極低導(dǎo)通電阻與高電流能力
以 BMF540R12MZA3 模塊為例,該模塊額定電壓1200V,連續(xù)漏極電流高達(dá) 540A (TC?=90°C)。其典型的導(dǎo)通電阻 RDS(on)? 在 25°C 時(shí)僅為 2.2 mΩ,即便在 175°C 高溫下也僅上升至 3.8 mΩ 。
SST應(yīng)用價(jià)值: 在ISOP架構(gòu)的低壓側(cè)(輸出并聯(lián)側(cè)),匯流電流極大。例如一個(gè)1MVA的SST,低壓側(cè)直流電流可達(dá)數(shù)千安培。使用這種超低阻抗模塊,可以顯著減少并聯(lián)模塊的數(shù)量,簡(jiǎn)化母排設(shè)計(jì),并大幅降低I2R導(dǎo)通損耗,直接提升整機(jī)效率。
5.2.2 優(yōu)化的反向恢復(fù)與開關(guān)特性
DAB變換器的工作依賴于能量在電感和變壓器之間的交換。在死區(qū)時(shí)間內(nèi),MOSFET的體二極管會(huì)續(xù)流。傳統(tǒng)Si MOSFET體二極管反向恢復(fù)特性差,導(dǎo)致嚴(yán)重的EMI和損耗。
BASiC的 BMF360R12KA3 (1200V/360A) 和 BMF160R12RA3 等模塊明確標(biāo)注了優(yōu)化的體二極管反向恢復(fù)行為(Body Diode Reverse Recovery behavior optimized)。數(shù)據(jù)手冊(cè)顯示,BMF360R12KA3在600V/360A工況下的開通損耗 Eon? 僅為 7.6 mJ,關(guān)斷損耗 Eoff? 為 3.9 mJ 。
SST應(yīng)用價(jià)值: 低 Eon? 和 Eoff? 是實(shí)現(xiàn)高頻化的前提。更重要的是,優(yōu)化的體二極管特性(或如 BMF008MR12E2G3 模塊集成了SiC肖特基二極管實(shí)現(xiàn)“零反向恢復(fù)” )對(duì)于DAB變換器至關(guān)重要,它能抑制死區(qū)時(shí)間結(jié)束瞬間的電流尖峰,保護(hù)對(duì)管不被擊穿,并減少死區(qū)時(shí)間設(shè)定的裕量,從而擴(kuò)大功率傳輸范圍。
5.2.3 先進(jìn)封裝技術(shù)的可靠性保障
SST通常應(yīng)用于電網(wǎng)節(jié)點(diǎn),對(duì)可靠性要求極高(通常要求20年以上壽命)。BASiC模塊采用了 氮化硅(Si3?N4?)AMB陶瓷基板 和 銅基板 36。
SST應(yīng)用價(jià)值: Si3?N4? 陶瓷具有極高的機(jī)械強(qiáng)度和斷裂韌性,熱導(dǎo)率遠(yuǎn)高于傳統(tǒng)的氧化鋁(Al2?O3?)。在SST面臨電網(wǎng)負(fù)荷波動(dòng)導(dǎo)致的熱循環(huán)沖擊時(shí),Si3?N4? 基板能有效抵抗熱應(yīng)力引起的焊層疲勞和裂紋擴(kuò)展,大幅提升模塊的功率循環(huán)壽命(Power Cycling Capability) 37。這對(duì)于無人值守的SST站點(diǎn)尤為關(guān)鍵。
5.3 SiC與Si在SST中的量化對(duì)比
| 性能指標(biāo) | 硅 (Si) IGBT 方案 | 碳化硅 (SiC) MOSFET 方案 | SST系統(tǒng)層面的影響 |
|---|---|---|---|
| 開關(guān)頻率 | 1 kHz - 5 kHz | 20 kHz - 100 kHz+ | SiC方案使變壓器和無源元件體積減小80%以上,功率密度成倍提升。 |
| 導(dǎo)通特性 | VCE(sat)? 拐點(diǎn)電壓,小電流下?lián)p耗占比大 | RDS(on)? 純阻性,無拐點(diǎn)電壓 | SiC在輕載和額定負(fù)載下效率更高,特別適合負(fù)載波動(dòng)大的配電網(wǎng)。 |
| 反向恢復(fù) | 拖尾電流嚴(yán)重,Qrr?大 | Qrr?極小或?yàn)榱?SBD) | SiC允許DAB采用更激進(jìn)的死區(qū)設(shè)置,減少波形畸變,提升全范圍效率。 |
| 耐溫能力 | Tj,max?≈150°C | Tj,max?≈175°C (未來可達(dá)200+) | SiC方案散熱器體積減小,系統(tǒng)過載能力增強(qiáng)。 |
表 1:Si與SiC器件在SST應(yīng)用中的關(guān)鍵性能對(duì)比 39
6. 面臨的工程挑戰(zhàn)與解決之道
盡管SiC模塊為SST帶來了巨大的性能提升,但其高頻、高壓、高開關(guān)速度(High dv/dt)的特性也給工程實(shí)現(xiàn)帶來了新的挑戰(zhàn)。

6.1 高dv/dt引發(fā)的絕緣與EMI問題
SiC MOSFET的開關(guān)速度極快,dv/dt 可達(dá) 50-100 kV/μs。
挑戰(zhàn): 極高的電壓變化率會(huì)通過高頻變壓器的繞組間寄生電容耦合到副邊,產(chǎn)生共模噪聲(CM Noise),干擾低壓側(cè)的控制電路和傳感器。同時(shí),高頻應(yīng)力會(huì)加速變壓器絕緣材料的老化 。
解決方案:
變壓器屏蔽: 在HFT原副邊繞組間增加靜電屏蔽層(Shielding Layer),并將屏蔽層接地,引導(dǎo)共模電流流入地線而非信號(hào)線。
軟開關(guān)優(yōu)化: 利用TPS控制或諧振參數(shù)設(shè)計(jì),確保在大部分工況下實(shí)現(xiàn)ZVS開通,利用結(jié)電容自然限制dv/dt。
驅(qū)動(dòng)優(yōu)化: 采用具有高共模瞬態(tài)抗擾度(CMTI > 100kV/μs)的隔離驅(qū)動(dòng)芯片 。
6.2 驅(qū)動(dòng)保護(hù)與死區(qū)時(shí)間優(yōu)化
SiC MOSFET的短路耐受時(shí)間(Short Circuit Withstand Time, SCWT)通常僅為2-3μs,遠(yuǎn)低于IGBT的10μs。
挑戰(zhàn): 傳統(tǒng)的去飽和(Desat)保護(hù)可能反應(yīng)太慢,導(dǎo)致器件損壞。
解決方案: 在碳化硅(SiC)功率模塊的應(yīng)用中,**兩級(jí)關(guān)斷(2LTO - Two-Level Turn-Off)**已成為應(yīng)對(duì)短路(Short Circuit, SC)和過流保護(hù)的核心技術(shù)。相比傳統(tǒng)的硅基 IGBT,SiC MOSFET 對(duì)過壓和短路時(shí)間的耐受力更脆弱,因此 2LTO 的設(shè)計(jì)至關(guān)重要。
為什么 SiC 需要 2LTO?
在發(fā)生短路故障時(shí),電流會(huì)迅速飆升至額定電流的數(shù)倍。如果此時(shí)直接關(guān)斷:
電壓尖峰風(fēng)險(xiǎn): 根據(jù)公式 Vpk?=Vdc?+Lstray??dtdi?,SiC 極快的關(guān)斷速度(高 di/dt)結(jié)合回路寄生電感,會(huì)產(chǎn)生巨大的電壓尖峰,可能擊穿器件。
軟關(guān)斷(STO)的局限性: 傳統(tǒng)的軟關(guān)斷通過減小柵極電流來緩慢降低 Vgs?,但在大電流下,STO 可能導(dǎo)致關(guān)斷延遲過長(zhǎng),使 SiC 超出其短路耐受時(shí)間(通常僅為 2μs~3μs)。
2LTO 的邏輯是: 先將柵極電壓降至一個(gè)中間電平,抑制電流上升并初步降低 di/dt,經(jīng)過一段短時(shí)間的延遲后再?gòu)氐钻P(guān)斷。
2LTO 的工作過程
2LTO 的動(dòng)作通常分為以下三個(gè)階段:
第一階段:故障檢測(cè)與初始降壓
當(dāng)驅(qū)動(dòng) IC(如通過 Desat 或過流采樣)檢測(cè)到短路時(shí),立即將柵極電壓 Vgs? 從正常的導(dǎo)通電壓(如 15V 或 18V)降低到一個(gè)中間平臺(tái)電壓 V2LTO? (通常在 8V 至 10V 左右,略高于開啟閾值 Vth?)。
目的: 增加 MOSFET 的通道電阻,主動(dòng)限制短路電流的峰值。
第二階段:平臺(tái)期維持(Delay Time)
系統(tǒng)在 V2LTO? 電平下維持一段微秒級(jí)的延遲時(shí)間(td?)。
目的: 讓回路電流在這個(gè)受限的水平下穩(wěn)定下來,減小總體的 di/dt 動(dòng)能。
第三階段:安全關(guān)斷
在延遲期結(jié)束后,將 Vgs? 降至關(guān)斷電平(如 -3V 或 -5V),徹底關(guān)閉器件。
結(jié)果: 由于電流已經(jīng)預(yù)先被限制,最后的關(guān)斷過程產(chǎn)生的電壓過沖(Voltage Overshoot)被控制在安全范圍內(nèi)。
2LTO 與 STO 的對(duì)比
| 特性 | 軟關(guān)斷 (STO) | 兩級(jí)關(guān)斷 (2LTO) |
|---|---|---|
| 實(shí)現(xiàn)方式 | 恒流小電流放電或增大 Rg_off? | 階躍式降低 Vgs? 電平 |
| 控制復(fù)雜度 | 較低 | 較高(需設(shè)置平臺(tái)電壓和延遲時(shí)間) |
| 抑制電流峰值 | 效果有限,主要控制關(guān)斷斜率 | 非常有效,能主動(dòng)限制故障電流 |
| 電壓過沖控制 | 良好 | 優(yōu)秀,提供更好的電壓裕度 |
| SiC 適用性 | 適用于一般過載 | 旗艦級(jí)/重載 SiC 模塊的首選 |
硬件實(shí)施的關(guān)鍵參數(shù)
要完美發(fā)揮 2LTO 的作用,需要精確調(diào)整以下兩個(gè)參數(shù):
平臺(tái)電壓 (V2LTO?): * 如果設(shè)置太高,限制電流的效果不明顯。
如果設(shè)置太低(接近 Vth?),器件可能進(jìn)入線性區(qū)導(dǎo)致過熱損壞。
延遲時(shí)間 (td?): * 通常在 0.5μs 到 2μs 之間。必須確保總的保護(hù)動(dòng)作時(shí)間(從故障發(fā)生到徹底關(guān)斷)小于 SiC MOSFET 的短路耐受時(shí)間 tsc? 。
死區(qū)優(yōu)化: SiC MOSFET的體二極管導(dǎo)通壓降較高(3V-5V)。如果死區(qū)時(shí)間過長(zhǎng),體二極管長(zhǎng)時(shí)間續(xù)流會(huì)造成巨大的導(dǎo)通損耗。需要采用自適應(yīng)死區(qū)控制技術(shù),根據(jù)負(fù)載電流實(shí)時(shí)調(diào)整死區(qū)時(shí)間,使其剛好覆蓋開關(guān)動(dòng)作時(shí)間,既防止直通又最小化二極管導(dǎo)通時(shí)間 。
6.3 串?dāng)_(Crosstalk)抑制
在高頻橋式電路中,一個(gè)橋臂開關(guān)的高速開通會(huì)通過米勒電容Crss?向互補(bǔ)開關(guān)的柵極注入電流,可能導(dǎo)致誤導(dǎo)通(Shoot-through)。
解決方案: 推薦使用負(fù)壓關(guān)斷(如BASiC模塊推薦的-5V )來提高抗干擾裕度。
7. 結(jié)論
深圳市傾佳電子有限公司(簡(jiǎn)稱“傾佳電子”)是聚焦新能源與電力電子變革的核心推動(dòng)者:
傾佳電子成立于2018年,總部位于深圳福田區(qū),定位于功率半導(dǎo)體與新能源汽車連接器的專業(yè)分銷商,業(yè)務(wù)聚焦三大方向:
新能源:覆蓋光伏、儲(chǔ)能、充電基礎(chǔ)設(shè)施;
交通電動(dòng)化:服務(wù)新能源汽車三電系統(tǒng)(電控、電池、電機(jī))及高壓平臺(tái)升級(jí);
數(shù)字化轉(zhuǎn)型:支持AI算力電源、數(shù)據(jù)中心等新型電力電子應(yīng)用。
公司以“推動(dòng)國(guó)產(chǎn)SiC替代進(jìn)口、加速能源低碳轉(zhuǎn)型”為使命,響應(yīng)國(guó)家“雙碳”政策(碳達(dá)峰、碳中和),致力于降低電力電子系統(tǒng)能耗。代理并力推BASiC基本半導(dǎo)體SiC碳化硅MOSFET單管,BASiC基本半導(dǎo)體SiC碳化硅MOSFET功率模塊,BASiC基本半導(dǎo)體SiC模塊驅(qū)動(dòng)板等功率半導(dǎo)體器件以及新能源汽車連接器。
固態(tài)變壓器(SST)代表了電力電子技術(shù)在電網(wǎng)應(yīng)用中的最高水平之一。通過采用輸入串聯(lián)輸出并聯(lián)(ISOP)的模塊化架構(gòu),SST成功克服了半導(dǎo)體耐壓的物理限制,實(shí)現(xiàn)了中高壓電網(wǎng)的靈活接入。在核心的DC-DC變換級(jí),雙有源橋(DAB)變換器憑借其雙向流動(dòng)的特性和控制的靈活性,結(jié)合三重移相(TPS)或模型預(yù)測(cè)控制(MPC)等先進(jìn)策略,成為了實(shí)現(xiàn)高效能量管理的最優(yōu)解。
然而,SST從理論走向廣泛應(yīng)用的關(guān)鍵推手是碳化硅(SiC)技術(shù)。通過對(duì)基本半導(dǎo)體(BASiC Semiconductor)BMF系列模塊的深入分析,我們看到SiC器件以其極低的導(dǎo)通電阻(低至2.2mΩ)、納秒級(jí)的開關(guān)速度和卓越的封裝可靠性,完美契合了SST對(duì)高功率密度、高效率和長(zhǎng)壽命的嚴(yán)苛要求。SiC的應(yīng)用不僅將SST的開關(guān)頻率提升了一個(gè)數(shù)量級(jí),從而大幅削減了磁性元件的體積,更在系統(tǒng)層面提升了電能質(zhì)量控制的響應(yīng)速度。
隨著1200V/1700V SiC模塊成本的進(jìn)一步下降以及更高電壓等級(jí)(3.3kV - 10kV)SiC器件的成熟,SST有望在電動(dòng)汽車超充站、交直流混合微電網(wǎng)以及數(shù)據(jù)中心供電系統(tǒng)中大規(guī)模取代傳統(tǒng)變壓器,構(gòu)建起更加智能、高效、靈活的現(xiàn)代能源互聯(lián)網(wǎng)。
-
DC-DC
+關(guān)注
關(guān)注
30文章
2438瀏覽量
86593 -
功率半導(dǎo)體
+關(guān)注
關(guān)注
23文章
1447瀏覽量
45145 -
固態(tài)變壓器
+關(guān)注
關(guān)注
1文章
44瀏覽量
3271
發(fā)布評(píng)論請(qǐng)先 登錄
固態(tài)變壓器SST配套SiC功率模塊直流固態(tài)斷路器的技術(shù)發(fā)展趨勢(shì)
固態(tài)變壓器(SST)中LLC高頻DC/DC變換級(jí)的控制算法架構(gòu)與經(jīng)典代碼實(shí)現(xiàn)
基于半橋SiC模塊特性的SST固態(tài)變壓器高頻DC/DC級(jí)雙有源橋(DAB)變換器控制策略
25W平面DC - DC變壓器:PLR系列的卓越之選
BOURNS PDC 系列 DC - DC 變壓器:特性、規(guī)格與應(yīng)用解析
SST開發(fā)加速器:半實(shí)物仿真全鏈路解決方案
固態(tài)變壓器SST高頻DC-DC變換的技術(shù)發(fā)展趨勢(shì)
辰達(dá)MOSFET在DC-DC變換器中的關(guān)鍵作用與優(yōu)化策略
SST固態(tài)變壓器:高頻DC-DC變換拓?fù)?、先進(jìn)控制策略
評(píng)論