chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

機器學習的本質(zhì)

工程師 ? 來源:未知 ? 作者:姚遠香 ? 2018-12-07 16:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機器學習方法本質(zhì)上是人類認知方式的新世界,是人類的未來。工業(yè)革命解放了人類的體力,以機器學習技術(shù)逐步解鎖的人工智能革命將解放人類的腦力。這不是技術(shù)層面上的進步,而是從根本上改變?nèi)祟愓J知世界的方式。

長久以來,人類對事物的認知經(jīng)由三個步驟:原始數(shù)據(jù)——專業(yè)知識/經(jīng)驗常識——認知。長久以來,人類對事物的認知經(jīng)由三個步驟:原始數(shù)據(jù)——專業(yè)知識/經(jīng)驗常識——認知。

面對同樣的原始數(shù)據(jù)(股市數(shù)據(jù),儀表指數(shù),社會現(xiàn)象等),擁有不同知識的人將得出不同的認知;同樣,擁有相同知識的人,面對沒有數(shù)據(jù)、有少量數(shù)據(jù)、有大量數(shù)據(jù)以及有充分數(shù)據(jù)等不同情況時,也將得出不同的認知(信息均等博弈,信息不對稱博弈)。

那么究竟是知識重要還是數(shù)據(jù)重要?在人類歷史很長一段時間內(nèi),無疑是知識的擁有者占據(jù)了上風。而機器學習方法的出現(xiàn),則將這個趨勢徹底扭轉(zhuǎn)?;蛟S,“知識”未來將一文不值,而“數(shù)據(jù)”,才是價值連城。

機器學習的本質(zhì),就在于建立了(原始數(shù)據(jù)——認知)之間的直接映射,跳出了“知識”的束縛。從此,人類的認知方式改天換地。因為,從此我們或許再也不需要那冗桎的“知識”。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器學習
    +關注

    關注

    66

    文章

    8546

    瀏覽量

    136539
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    機器學習和深度學習中需避免的 7 個常見錯誤與局限性

    無論你是剛?cè)腴T還是已經(jīng)從事人工智能模型相關工作一段時間,機器學習和深度學習中都存在一些我們需要時刻關注并銘記的常見錯誤。如果對這些錯誤置之不理,日后可能會引發(fā)諸多麻煩!只要我們密切關注數(shù)據(jù)、模型架構(gòu)
    的頭像 發(fā)表于 01-07 15:37 ?112次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學習</b>和深度<b class='flag-5'>學習</b>中需避免的 7 個常見錯誤與局限性

    基于ETAS嵌入式AI工具鏈將機器學習模型部署到量產(chǎn)ECU

    AI在汽車行業(yè)的應用日益深化,如何將機器學習領域的先進模型(如虛擬傳感器)集成到ECU軟件中,已成為業(yè)界面臨的核心挑戰(zhàn)。
    的頭像 發(fā)表于 12-24 10:55 ?5419次閱讀
    基于ETAS嵌入式AI工具鏈將<b class='flag-5'>機器</b><b class='flag-5'>學習</b>模型部署到量產(chǎn)ECU

    CRC校驗的本質(zhì)和物理意義

    校驗的數(shù)學本質(zhì) 1. 模2除法與多項式表示 Modbus RTU采用的CRC-16算法基于多項式除法運算,其核心特征包括: 生成多項式:0x8005(標準表示)或0xA001(查表法優(yōu)化) 初始值
    發(fā)表于 11-13 07:58

    如何在機器視覺中部署深度學習神經(jīng)網(wǎng)絡

    人士而言往往難以理解,人們也常常誤以為需要扎實的編程技能才能真正掌握并合理使用這項技術(shù)。事實上,這種印象忽視了該技術(shù)為機器視覺(乃至生產(chǎn)自動化)帶來的潛力,因為深度學習并非只屬于計算機科學家或程序員。 從頭開始:什么
    的頭像 發(fā)表于 09-10 17:38 ?812次閱讀
    如何在<b class='flag-5'>機器</b>視覺中部署深度<b class='flag-5'>學習</b>神經(jīng)網(wǎng)絡

    什么是機器視覺及其功能?

    機器視覺本質(zhì)上是一個系統(tǒng)(例如一臺計算機)查看的能力。系統(tǒng)通過該能力分析圖像,然后作出決策或進行分類。
    的頭像 發(fā)表于 09-10 17:23 ?684次閱讀
    什么是<b class='flag-5'>機器</b>視覺及其功能?

    如何解決開發(fā)機器學習程序時Keil項目只能在調(diào)試模式下運行,但無法正常執(zhí)行的問題?

    如何解決開發(fā)機器學習程序時Keil項目只能在調(diào)試模式下運行,但無法正常執(zhí)行的問題
    發(fā)表于 08-28 07:28

    超小型Neuton機器學習模型, 在任何系統(tǒng)級芯片(SoC)上解鎖邊緣人工智能應用.

    Neuton 是一家邊緣AI 公司,致力于讓機器 學習模型更易于使用。它創(chuàng)建的模型比競爭對手的框架小10 倍,速度也快10 倍,甚至可以在最先進的邊緣設備上進行人工智能處理。在這篇博文中,我們將介紹
    發(fā)表于 07-31 11:38

    貿(mào)澤電子2025邊緣AI與機器學習技術(shù)創(chuàng)新論壇回顧(上)

    2025年,隨著人工智能技術(shù)的快速發(fā)展,邊緣AI與機器學習市場迎來飛速增長,據(jù)Gartner預計,2025年至2030年,邊緣AI市場將保持23%的復合年增長率。
    的頭像 發(fā)表于 07-21 11:08 ?1104次閱讀
    貿(mào)澤電子2025邊緣AI與<b class='flag-5'>機器</b><b class='flag-5'>學習</b>技術(shù)創(chuàng)新論壇回顧(上)

    FPGA在機器學習中的具體應用

    隨著機器學習和人工智能技術(shù)的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無法滿足高效處理大規(guī)模數(shù)據(jù)和復雜模型的需求。FPGA(現(xiàn)場可編程門陣列)作為一種靈活且高效的硬件加速平臺
    的頭像 發(fā)表于 07-16 15:34 ?2776次閱讀

    使用MATLAB進行無監(jiān)督學習

    無監(jiān)督學習是一種根據(jù)未標注數(shù)據(jù)進行推斷的機器學習方法。無監(jiān)督學習旨在識別數(shù)據(jù)中隱藏的模式和關系,無需任何監(jiān)督或關于結(jié)果的先驗知識。
    的頭像 發(fā)表于 05-16 14:48 ?1330次閱讀
    使用MATLAB進行無監(jiān)督<b class='flag-5'>學習</b>

    【「# ROS 2智能機器人開發(fā)實踐」閱讀體驗】視覺實現(xiàn)的基礎算法的應用

    閱讀心得體會:ROS2機器人視覺與地圖構(gòu)建技術(shù) 通過對本書第7章(ROS2視覺應用)和第8章(ROS2地圖構(gòu)建)的學習,我對機器人視覺感知和自主導航的核心技術(shù)有了更深入的理解。以下是我的心得體會
    發(fā)表于 05-03 19:41

    **【技術(shù)干貨】Nordic nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機器學習的完美結(jié)合**

    【技術(shù)干貨】nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機器學習的完美結(jié)合 近期收到不少伙伴咨詢nRF54系列芯片的應用與技術(shù)細節(jié),今天我們整理幾個核心問題與解答,帶你快速掌握如何在nRF54上部署AI
    發(fā)表于 04-01 00:00

    請問STM32部署機器學習算法硬件至少要使用哪個系列的芯片?

    STM32部署機器學習算法硬件至少要使用哪個系列的芯片?
    發(fā)表于 03-13 07:34

    SLAMTEC Aurora:把深度學習“卷”進機器人日常

    在人工智能和機器人技術(shù)飛速發(fā)展的今天,深度學習與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領著智能機器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡直殺瘋了!靠著逆天的深度學習
    的頭像 發(fā)表于 02-19 15:49 ?819次閱讀

    機器學習模型市場前景如何

    當今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機器學習模型市場的未來發(fā)展。
    的頭像 發(fā)表于 02-13 09:39 ?691次閱讀