chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

了解深度學習神經(jīng)網(wǎng)絡的現(xiàn)狀,英特爾FPGA實施神經(jīng)網(wǎng)絡的必然之選

電子工程師 ? 來源:lq ? 2018-12-17 16:03 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在腦認知科學中有這么一個觀點,如果幾個神經(jīng)元之間經(jīng)常構(gòu)成連通路,且通過這幾個神經(jīng)元進行信息傳遞不如兩者直接通過在彼此中間“搭橋”進行信息傳遞來得快,那么大腦結(jié)構(gòu)就會根據(jù)細胞結(jié)構(gòu)上信息傳遞的頻率在兩者之間幫助生出一個神經(jīng)元來幫助更高效的獲取與處理大腦信息。

從上面這個內(nèi)容中我們可以發(fā)現(xiàn),現(xiàn)在人工智能的發(fā)展并不足夠完美,但我們依然受類似的生物系統(tǒng)啟發(fā)從而提出神經(jīng)網(wǎng)絡結(jié)構(gòu),并將之用于人工智能技術(shù)的發(fā)展?,F(xiàn)在,通過融合強大計算資源和用于神經(jīng)元的新型架構(gòu),神經(jīng)網(wǎng)絡已然在計算機視覺和機器翻譯等很多領(lǐng)域都取得了最先進的成果。

然而相對來說,這樣的技術(shù)發(fā)展可都有各種嚴格的要求,尤其速度。那么我們現(xiàn)代人在大數(shù)據(jù)噴發(fā)的今天,是怎么做到計算與速度兩者皆備的呢?在此之前,我們不妨先來了解深度學習神經(jīng)網(wǎng)絡的現(xiàn)狀。

深度學習神經(jīng)網(wǎng)絡現(xiàn)狀

深度學習神經(jīng)網(wǎng)絡系統(tǒng)目前已能夠為許多人提供最佳解決方案,并已用于圖像識別和自然語言處理的大型計算問題。更多的人使用傳統(tǒng)的處理來模仿神經(jīng)網(wǎng)絡并創(chuàng)建一個系統(tǒng),并通過觀察來學習。雖然我們在這個領(lǐng)域已經(jīng)取得了很大進展,但基于Web的神經(jīng)網(wǎng)絡高性能系統(tǒng)開發(fā)等多種技術(shù),在功耗,成本和性能方面仍然存在重大挑戰(zhàn)。

此外,最廣泛使用的深度學習系統(tǒng)是卷積神經(jīng)網(wǎng)絡(細胞神經(jīng)網(wǎng)絡)。這些系統(tǒng)使用神經(jīng)元的前饋人工網(wǎng)絡執(zhí)行圖像識別。如有線電視新聞網(wǎng)是由層組成。其中,池化層通過最大值或值平均,池化減少變化圖像特定區(qū)域的共同特征。CNN層的數(shù)量與圖像識別的準確性相關(guān);更多圖層需要更多系統(tǒng)性能。這些層可以獨立運行。

圖1:二維卷積層

多核處理系統(tǒng)使用外部存儲器緩沖每層之間的數(shù)據(jù),這需要大量的內(nèi)存與帶寬。到目前為止,神經(jīng)網(wǎng)絡中性能最強的功能是卷積自己。傳統(tǒng)的處理器內(nèi)核必須為每個內(nèi)核執(zhí)行大量指令。卷積需要大量的處理與帶寬。

實現(xiàn)CNN的有效實施有兩個主要挑戰(zhàn)。首先是能夠在管道中執(zhí)行函數(shù),將數(shù)據(jù)從上一個層傳遞到下一個。第二是有效地執(zhí)行卷積函數(shù)。另外,這些功能應該用一種方法構(gòu)建允許輕松重新編程不同類型的硬件和移植到未來的高級硬件,否則,每個新的實現(xiàn)都需要廣泛的重新優(yōu)化。

英特爾FPGA,實施神經(jīng)網(wǎng)絡的必然之選

在英特爾公司,F(xiàn)PGA 當稱實施神經(jīng)網(wǎng)絡的必然之選,它可在同一設備上處理計算、邏輯和存儲資源中的不同算法。與其它同行對手的裝置相比,其性能更快,用戶可通過硬件來完成核心部分運算。加上軟件開發(fā)者可使用 OpenCL?1C 級編程標準,將 FPGA 作為標準 CPU 的加速器,更加無需處理硬件級設計。

“Why?因為它能將計算,邏輯和內(nèi)存資源結(jié)合在一起共同使用。再加上英特爾?FPGASDK的幫助,使得它能夠適用于各種加速應用并使用更多復雜的算法。軟件開發(fā)人員也可以使用OpenCL C級編程標準?!?/p>

此外,英特爾已經(jīng)開發(fā)出可擴展的卷積神經(jīng)網(wǎng)絡參考設計,并用于使用OpenCL編程的深度學習系統(tǒng)。(使用OpenCL SDK構(gòu)建的語言)這個設計首先是在Stratix?V器件系列上實現(xiàn),現(xiàn)在適用于Arria?10器件。設計表現(xiàn)是使用兩個流行的CNN基準進行基準測試:CIFAR-10和ImageNet。(典型的GPU實現(xiàn)批處理圖像需要大量的外部存儲器帶寬。相比之下,F(xiàn)PGA可以一次性處理圖像,芯片上的數(shù)據(jù)重用率更高,外部使用更少內(nèi)存帶寬。)

圖2:神經(jīng)網(wǎng)絡數(shù)據(jù)通道

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 英特爾
    +關(guān)注

    關(guān)注

    61

    文章

    10245

    瀏覽量

    178173
  • 神經(jīng)網(wǎng)絡

    關(guān)注

    42

    文章

    4819

    瀏覽量

    106074
  • 深度學習
    +關(guān)注

    關(guān)注

    73

    文章

    5586

    瀏覽量

    123648

原文標題:從“腦認知科學”看神經(jīng)元之旅,你對深度神經(jīng)網(wǎng)絡該有這樣的認知

文章出處:【微信號:FPGAer_Club,微信公眾號:FPGAer俱樂部】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡 : BP神經(jīng)網(wǎng)絡是一種多層的前饋神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:53 ?1038次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡學習

    優(yōu)化BP神經(jīng)網(wǎng)絡學習率是提高模型訓練效率和性能的關(guān)鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡學習率的方法: 一、理解學習率的重要性
    的頭像 發(fā)表于 02-12 15:51 ?1276次閱讀

    BP神經(jīng)網(wǎng)絡的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?1273次閱讀

    什么是BP神經(jīng)網(wǎng)絡的反向傳播算法

    神經(jīng)網(wǎng)絡(即反向傳播神經(jīng)網(wǎng)絡)的核心,它建立在梯度下降法的基礎上,是一種適合于多層神經(jīng)元網(wǎng)絡學習算法。該算法通過計算每層網(wǎng)絡的誤差,并將這
    的頭像 發(fā)表于 02-12 15:18 ?1076次閱讀

    BP神經(jīng)網(wǎng)絡深度學習的關(guān)系

    BP神經(jīng)網(wǎng)絡深度學習之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡的基本概念 BP神經(jīng)網(wǎng)絡,即反向傳播
    的頭像 發(fā)表于 02-12 15:15 ?1182次閱讀

    深度學習入門:簡單神經(jīng)網(wǎng)絡的構(gòu)建與實現(xiàn)

    深度學習中,神經(jīng)網(wǎng)絡是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個簡單的神經(jīng)網(wǎng)絡神經(jīng)網(wǎng)絡由多個
    的頭像 發(fā)表于 01-23 13:52 ?710次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡 ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1787次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡的實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡因其在圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術(shù)的快速發(fā)展,多種實現(xiàn)工具和框架應運而生,為研究人員和開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?934次閱讀

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    深度學習領(lǐng)域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?2249次閱讀

    深度學習中的卷積神經(jīng)網(wǎng)絡模型

    深度學習近年來在多個領(lǐng)域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡作為深度學習的一個分支,因其在圖像處理
    的頭像 發(fā)表于 11-15 14:52 ?1071次閱讀

    卷積神經(jīng)網(wǎng)絡的基本原理與算法

    ),是深度學習的代表算法之一。 一、基本原理 卷積運算 卷積運算是卷積神經(jīng)網(wǎng)絡的核心,用于提取圖像中的局部特征。 定義卷積核:卷積核是一個小的矩陣,用于在輸入圖像上滑動,提取局部特征。 滑動窗口:將卷積核在輸入圖像上滑動,每次滑
    的頭像 發(fā)表于 11-15 14:47 ?2198次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡的區(qū)別

    神經(jīng)網(wǎng)絡是機器學習領(lǐng)域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(RNN)和傳統(tǒng)
    的頭像 發(fā)表于 11-15 09:42 ?1799次閱讀

    LSTM神經(jīng)網(wǎng)絡與傳統(tǒng)RNN的區(qū)別

    深度學習領(lǐng)域,循環(huán)神經(jīng)網(wǎng)絡(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關(guān)注。然而,傳統(tǒng)RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)
    的頭像 發(fā)表于 11-13 09:58 ?1519次閱讀

    LSTM神經(jīng)網(wǎng)絡的基本原理 如何實現(xiàn)LSTM神經(jīng)網(wǎng)絡

    LSTM(長短期記憶)神經(jīng)網(wǎng)絡是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(RNN),它能夠學習長期依賴信息。在處理序列數(shù)據(jù)時,如時間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時間序列中的長期依賴關(guān)系而受到
    的頭像 發(fā)表于 11-13 09:53 ?2244次閱讀

    Moku人工神經(jīng)網(wǎng)絡101

    不熟悉神經(jīng)網(wǎng)絡的基礎知識,或者想了解神經(jīng)網(wǎng)絡如何優(yōu)化加速實驗研究,請繼續(xù)閱讀,探索基于深度學習的現(xiàn)代智能化實驗的廣闊應用前景。什么是
    的頭像 發(fā)表于 11-01 08:06 ?846次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>101