chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何選擇合適的深度學(xué)習(xí)框架開(kāi)展人工智能研究

NVIDIA英偉達(dá)企業(yè)解決方案 ? 來(lái)源:cc ? 2019-01-29 14:59 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度學(xué)習(xí)框架正如一家雜貨店,當(dāng)人們想要做一頓美餐的時(shí)候,想必沒(méi)有幾個(gè)人會(huì)親自到菜園里種菜,而是選擇從市場(chǎng)里購(gòu)買(mǎi)食材。

正如想要炒菜的人不會(huì)親自去種菜采摘一樣,開(kāi)發(fā)者們也不想每次搭建深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的時(shí)侯都從零開(kāi)始。

由于深度學(xué)習(xí)模型規(guī)模龐大且結(jié)構(gòu)復(fù)雜,在編寫(xiě)功能代碼的時(shí)候,程序員不會(huì)每種功能代碼都從頭編寫(xiě),而是會(huì)借助框架和軟件庫(kù)來(lái)高效地構(gòu)建神經(jīng)網(wǎng)絡(luò)。頂級(jí)深度學(xué)習(xí)框架可提供專(zhuān)用于深度神經(jīng)網(wǎng)絡(luò)計(jì)算的代碼,這些代碼均經(jīng)過(guò)高度優(yōu)化,并支持GPU計(jì)算。

深度學(xué)習(xí)框架之間的差異

不同類(lèi)型的雜貨店通常都有其各自專(zhuān)營(yíng)的特色商品。比如,當(dāng)人們烹飪家常菜的時(shí)候,通常可以直接在當(dāng)?shù)厥袌?chǎng)買(mǎi)到所需的基礎(chǔ)食材;可是當(dāng)人們想要制作具有異域風(fēng)情的高級(jí)菜品的時(shí)候,則可能更喜歡在大型超市里選購(gòu)進(jìn)口蔬菜,挑選未經(jīng)人工催熟的有機(jī)水果;又或者,當(dāng)您要為一大桌子人準(zhǔn)備飯菜,您又有可能會(huì)選擇在批發(fā)市場(chǎng)里采購(gòu)一番。

同樣道理,雖然開(kāi)發(fā)者可以基于任意一種深度學(xué)習(xí)框架構(gòu)建出絕大多數(shù)類(lèi)型的網(wǎng)絡(luò)(例如卷積神經(jīng)網(wǎng)絡(luò)或遞歸神經(jīng)網(wǎng)絡(luò)),但各個(gè)框架在可用示例的數(shù)量和更新頻率方面各有差異。此外,在增添新功能方面,各個(gè)深度學(xué)習(xí)框架中貢獻(xiàn)者的數(shù)量也彼此不同,而且框架通過(guò)API 提供功能的方式也同樣各具特色。

頂級(jí)框架都是開(kāi)源的,其中大部分框架的發(fā)布時(shí)間始于 2014 年,而且其開(kāi)發(fā)工作一直都很活躍。

如何選擇深度學(xué)習(xí)框架

在選擇深度學(xué)習(xí)框架的時(shí)候,開(kāi)發(fā)者們通常會(huì)有很多不同的考量,例如:框架前端與開(kāi)發(fā)者專(zhuān)業(yè)技能的匹配程度,可獲取的社區(qū)支持力度,或他們感興趣的新功能的開(kāi)發(fā)速度。

深度學(xué)習(xí)框架一般可以使用例如Python 或 C/C ++ 等編程語(yǔ)言中的腳本,通過(guò)命令訪問(wèn)接口;也可以通過(guò)類(lèi)似于 NVIDIA DIGITS 的圖形界面進(jìn)行訪問(wèn),此類(lèi)界面允許開(kāi)發(fā)者在更加用戶(hù)友好的 Web 應(yīng)用程序中構(gòu)建深度神經(jīng)網(wǎng)絡(luò)。

如果您希望將您的深度學(xué)習(xí)應(yīng)用程序與 NVIDIA GPU 相集成的話(huà),請(qǐng)查看 NVIDIA 開(kāi)發(fā)者計(jì)劃以了解更多信息。

如何在深度學(xué)習(xí)框架之間遷移模型

根據(jù)其所開(kāi)發(fā)應(yīng)用程序的需要,開(kāi)發(fā)者可能會(huì)首先使用一個(gè)框架來(lái)構(gòu)建和訓(xùn)練深度學(xué)習(xí)模型;然后再使用不同的框架對(duì)模型進(jìn)行重新訓(xùn)練,或者在不同的框架上部署該模型,以便進(jìn)行推理。

開(kāi)放式神經(jīng)網(wǎng)絡(luò)交換 (ONNX) 是一種允許開(kāi)發(fā)者在框架之間遷移模型的深度學(xué)習(xí)模型格式。ONNX 支持在大多數(shù)主流框架之間進(jìn)行模型遷移。當(dāng)深度學(xué)習(xí)應(yīng)用程序已經(jīng)完成了訓(xùn)練并可以部署時(shí), TensorRT 軟件會(huì)對(duì)NVIDIA GPU 上的高性能推理模型進(jìn)行優(yōu)化。TensorRT 與 TensorFlowMATLAB 高度集成,并且支持導(dǎo)入 ONNX 格式的深度學(xué)習(xí)模型。

以下列舉了一些熱門(mén)的深度學(xué)習(xí)框架,以及多家公司和研究人員如何構(gòu)建用于醫(yī)療、災(zāi)難預(yù)測(cè)和細(xì)胞生物學(xué)的GPU加速應(yīng)用程序的案例。

Apache MXNet

Apache MXNet 是由 Apache Software Foundation 于 2015 年創(chuàng)建的深度學(xué)習(xí)框架。一家位于西雅圖的初創(chuàng)公司——Magic AI, 正在利用深度學(xué)習(xí)模型來(lái)監(jiān)控馬匹的健康狀況,該模型基于 MXNet 構(gòu)建,并運(yùn)行于 NVIDIA GPU 上。該神經(jīng)網(wǎng)絡(luò)可以逐幀分析馬廄內(nèi)的監(jiān)控視頻,當(dāng)出現(xiàn)意外狀況,例如:馬匹即將分娩,馬匹表現(xiàn)出絞痛癥狀或陌生人進(jìn)入馬廄時(shí),該神經(jīng)網(wǎng)絡(luò)會(huì)向馬場(chǎng)主發(fā)送警報(bào)。

開(kāi)發(fā)者可以將模型遷移到 ONNX 進(jìn)行推理,然后使用 NVIDIA TensorRT 進(jìn)行優(yōu)化和部署。

Caffe

Caffe 深度學(xué)習(xí)框架于2014 年誕生在加州大學(xué)伯克利分校,并催生了 NVCaffe 等分支以及類(lèi)似于 Facebook 的 Caffe2(現(xiàn)與 PyTorch 合并)的新型框架。肺癌是全球最常見(jiàn)的癌癥,半數(shù)被診斷為肺癌的患者會(huì)在一年內(nèi)死亡。借助深度學(xué)習(xí)和 NVIDIA GPU,位于圣路易斯的初創(chuàng)公司 Innovation DX利用胸部 X 光掃描對(duì)肺癌進(jìn)行早期篩查。他們的早期檢測(cè)工具由神經(jīng)網(wǎng)絡(luò)和 Caffe 框架提供支持,可以使肺癌患者的存活率提高兩倍。

開(kāi)發(fā)者可以利用 NVIDIA TensorRT 的內(nèi)置 Caffe 模型導(dǎo)入器,對(duì)推理模型進(jìn)行優(yōu)化和部署。

Chainer

Chainer 誕生于 2015 年,由日本風(fēng)險(xiǎn)投資公司Preferred Networks開(kāi)發(fā)。利用這款基于 Python 的框架,Preferred Networks與工業(yè)自動(dòng)化巨頭 FANUC 攜手合作,共同參加了 2016 年的亞馬遜分揀貨物挑戰(zhàn)賽 (Amazon Picking Challenge)。挑戰(zhàn)賽的內(nèi)容是讓自主機(jī)器人分揀并放置物品。Preferred Networks 和 FANUC 在比賽中使用了卷積神經(jīng)網(wǎng)絡(luò)和用于筆記本電腦的NVIDIA GeForce GTX 870M GPU,并最終取得了第二名的好成績(jī)。

開(kāi)發(fā)者可以將模型遷移到 ONNX 進(jìn)行推理,然后使用 NVIDIA TensorRT 進(jìn)行優(yōu)化和部署。

Keras

Keras 是一個(gè)可以在多個(gè)框架上運(yùn)行的界面,使用高級(jí)Python API ,它可以在諸如MXNet、TensorFlow、Theano 和 Microsoft Cognitive Toolkit等不同框架之上運(yùn)行。Keras 由研究人員 Fran?oisChollet 于 2014 年創(chuàng)建,旨在讓統(tǒng)一且抽象的 API 變得易于使用。一個(gè)韓國(guó)研究團(tuán)隊(duì)使用 Keras 來(lái)提高颶風(fēng)預(yù)測(cè)的速度和準(zhǔn)確性。他們使用 TensorFlow 上的 Keras 構(gòu)建了深度學(xué)習(xí)模型,并在 NVIDIA GPU 上運(yùn)行,可以提前幾個(gè)小時(shí)預(yù)測(cè)風(fēng)暴的路徑和降水量。由于這些神經(jīng)網(wǎng)絡(luò)能夠提前預(yù)測(cè)風(fēng)暴,因此他們可以在颶風(fēng)來(lái)襲之前向當(dāng)?shù)鼐用癜l(fā)出警告,爭(zhēng)取更多的疏散時(shí)間。

MATLAB

MATLAB 允許熟悉其軟件的工程師使用 MATLAB 代碼來(lái)開(kāi)發(fā)深度學(xué)習(xí)工具。借助MATLAB 和NVIDIA GPU,阿爾伯塔大學(xué)的研究人員致力于幫助患者避免不必要的前列腺癌活檢。該團(tuán)隊(duì)的深度學(xué)習(xí)模型對(duì)細(xì)胞外囊泡的生物標(biāo)志物數(shù)據(jù)進(jìn)行分析,從而預(yù)判是否存在癌細(xì)胞。

在推理方面,開(kāi)發(fā)者可以通過(guò) MATLAB GPU Coder 使用 TensorRT 自動(dòng)生成經(jīng)過(guò)優(yōu)化的推理引擎。

Microsoft Cognitive Toolkit

這款由微軟公司于2014年推出的深度學(xué)習(xí)框架,起初被命名為CNTK, 其主要為微軟自己的AI模型(如 Cortana)提供支持。借助NVIDIA Tesla GPU和 Microsoft Cognitive Toolkit,醫(yī)療科技公司 IRIS 專(zhuān)注于預(yù)防糖尿病視網(wǎng)膜病變或糖尿病引起的失明,此類(lèi)疾病只能通過(guò)眼科檢查才能發(fā)現(xiàn),患者很難自行判斷。而IRIS 的神經(jīng)網(wǎng)絡(luò)可通過(guò)分析視網(wǎng)膜圖像,告知患者是否需要到專(zhuān)業(yè)醫(yī)師處就診。

開(kāi)發(fā)者可以將模型遷移到 ONNX 進(jìn)行推理,然后使用 NVIDIA TensorRT 進(jìn)行優(yōu)化和部署。

PyTorch

PyTorch 的前身是 Torch,一種基于編程語(yǔ)言 Lua 的熱門(mén)深度學(xué)習(xí)框架,該框架于 2011 年推出。隨后,2017 年,F(xiàn)acebook 推出了 PyTorch,后者繼承了 Torch 的功能并可以在 Python 中實(shí)施。艾倫細(xì)胞科學(xué)研究所 (Allen Institute of Cell Science) 的研究人員利用 PyTorch 開(kāi)發(fā)出了首個(gè)可預(yù)測(cè)人體活細(xì)胞的3D 模型,該模型由 NVIDIA DGX 工作站和 TITAN Xp GPU 提供支持,能夠讓科學(xué)家在虛擬環(huán)境中以數(shù)字方式實(shí)現(xiàn)細(xì)胞的可視化并操縱細(xì)胞行為。這款利用卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建的細(xì)胞模型可以替代昂貴的熒光顯微鏡觀測(cè),讓科學(xué)家能夠以一種前所未有的方式理解和預(yù)測(cè)細(xì)胞活動(dòng)。

開(kāi)發(fā)者可以將模型遷移到 ONNX 進(jìn)行推理,然后使用 NVIDIA TensorRT 進(jìn)行優(yōu)化和部署。

TensorFlow

TensorFlow 是 Google 于 2015 年創(chuàng)建的深度學(xué)習(xí)框架。德克薩斯大學(xué) MD 安德森癌癥中心的研究人員正在使用 TensorFlow 開(kāi)發(fā)高精度放射治療技術(shù)。放射科醫(yī)師通常會(huì)檢查癌癥患者的掃描圖像,以判斷在不損害正常組織的情況下應(yīng)該使用多少輻射量來(lái)進(jìn)行腫瘤靶向治療。借助 NVIDIA Tesla GPU,研究人員開(kāi)發(fā)了可學(xué)習(xí)并模仿醫(yī)生工作模式的深度學(xué)習(xí)模型,來(lái)識(shí)別放射目標(biāo)區(qū)域。

在推理方面,開(kāi)發(fā)者既可以使用 TensorFlow-TensorRT 集成功能優(yōu)化 TensorFlow 中的模型;也可以導(dǎo)出 TensorFlow 模型,然后使用 NVIDIA TensorRT 的內(nèi)置 TensorFlow 模型導(dǎo)入器在 TensorRT 中進(jìn)行優(yōu)化。

廣泛的框架生態(tài)系統(tǒng)

NVIDIA與上述諸多框架以及其他框架(如百度的 PaddlePaddle)合作,使深度學(xué)習(xí)應(yīng)用程序得以成功實(shí)現(xiàn)。

新型深度學(xué)習(xí)框架正在不斷地涌現(xiàn),這表明神經(jīng)網(wǎng)絡(luò)得到了開(kāi)發(fā)者的廣泛采用。Theano 和 Torch 這類(lèi)早期框架為許多深度學(xué)習(xí)應(yīng)用程序提供了支持,但其創(chuàng)建者在 2017 年宣布,他們將不再繼續(xù)開(kāi)發(fā)這些框架。

NVIDIA 的深度學(xué)習(xí)框架團(tuán)隊(duì)直接參與了其中的多個(gè)開(kāi)源項(xiàng)目,僅在去年,就做出了共計(jì) 800 多項(xiàng)貢獻(xiàn),提高了這些項(xiàng)目的易用性和性能。

NGC 容器注冊(cè)表允許訪客即時(shí)訪問(wèn)上述多種框架,并能夠按照訪客的需求,為其提供最佳的 GPU 加速性能。

了解更多有關(guān)深度學(xué)習(xí)框架的資源和安裝信息,請(qǐng)?jiān)L問(wèn)NVIDIA Developer 網(wǎng)站。該中心還為一些最常見(jiàn)的深度學(xué)習(xí)框架和應(yīng)用程序提供示例神經(jīng)網(wǎng)絡(luò)訓(xùn)練腳本,例如計(jì)算機(jī)視覺(jué)、機(jī)器翻譯和對(duì)象檢測(cè)。在 NVIDIA GPU Cloud 目錄中還提供深度學(xué)習(xí)容器套件。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    35168

    瀏覽量

    280106
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122805

原文標(biāo)題:一文教你如何選擇深度學(xué)習(xí)框架開(kāi)啟AI研究

文章出處:【微信號(hào):NVIDIA-Enterprise,微信公眾號(hào):NVIDIA英偉達(dá)企業(yè)解決方案】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    最新人工智能硬件培訓(xùn)AI 基礎(chǔ)入門(mén)學(xué)習(xí)課程參考2025版(大模型篇)

    人工智能大模型重塑教育與社會(huì)發(fā)展的當(dāng)下,無(wú)論是探索未來(lái)職業(yè)方向,還是更新技術(shù)儲(chǔ)備,掌握大模型知識(shí)都已成為新時(shí)代的必修課。從職場(chǎng)上輔助工作的智能助手,到課堂用于學(xué)術(shù)研究智能工具,大模
    發(fā)表于 07-04 11:10

    人工智能和機(jī)器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    人工智能相關(guān)各種技術(shù)的概念介紹,以及先進(jìn)的Edge AI(邊緣人工智能)的最新發(fā)展與相關(guān)應(yīng)用。 人工智能和機(jī)器學(xué)習(xí)是現(xiàn)代科技的核心技術(shù) 人工智能
    的頭像 發(fā)表于 01-25 17:37 ?940次閱讀
    <b class='flag-5'>人工智能</b>和機(jī)器<b class='flag-5'>學(xué)習(xí)</b>以及Edge AI的概念與應(yīng)用

    迅龍軟件受邀參加華為昇思人工智能框架峰會(huì),展示昇思X香橙派的創(chuàng)新AI案例

    12月14日,昇思人工智能框架峰會(huì)在北京中關(guān)村國(guó)際創(chuàng)新中心召開(kāi),本次大會(huì)以“創(chuàng)新源動(dòng)力,框架選擇”為主題,由昇思MindSpore開(kāi)源社區(qū)、中國(guó)
    的頭像 發(fā)表于 12-17 18:02 ?880次閱讀
    迅龍軟件受邀參加華為昇思<b class='flag-5'>人工智能</b><b class='flag-5'>框架</b>峰會(huì),展示昇思X香橙派的創(chuàng)新AI案例

    華為推動(dòng)中國(guó)人工智能框架生態(tài)高速發(fā)展

    近日,昇思人工智能框架峰會(huì)在北京中關(guān)村國(guó)際創(chuàng)新中心召開(kāi),本次大會(huì)以“創(chuàng)新源動(dòng)力,框架選擇”為主題,由昇思MindSpore開(kāi)源社區(qū)、中國(guó)人工智能
    的頭像 發(fā)表于 12-17 11:06 ?793次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    領(lǐng)域,如工業(yè)控制、智能家居、醫(yī)療設(shè)備等。 人工智能是計(jì)算機(jī)科學(xué)的一個(gè)分支,它研究如何使計(jì)算機(jī)具備像人類(lèi)一樣思考、學(xué)習(xí)、推理和決策的能力。人工智能
    發(fā)表于 11-14 16:39

    人工智能、機(jī)器學(xué)習(xí)深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類(lèi)似人類(lèi)智能的設(shè)備。AI有很多技術(shù),但其中一個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2982次閱讀
    <b class='flag-5'>人工智能</b>、機(jī)器<b class='flag-5'>學(xué)習(xí)</b>和<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    、優(yōu)化等方面的應(yīng)用有了更清晰的認(rèn)識(shí)。特別是書(shū)中提到的基于大數(shù)據(jù)和機(jī)器學(xué)習(xí)的能源管理系統(tǒng),通過(guò)實(shí)時(shí)監(jiān)測(cè)和分析能源數(shù)據(jù),實(shí)現(xiàn)了能源的高效利用和智能化管理。 其次,第6章通過(guò)多個(gè)案例展示了人工智能在能源科學(xué)中
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    閱讀這一章后,我深感人工智能與生命科學(xué)的結(jié)合正引領(lǐng)著一場(chǎng)前所未有的科學(xué)革命,以下是我個(gè)人的讀后感: 1. 技術(shù)革新與生命科學(xué)進(jìn)步 這一章詳細(xì)闡述了人工智能如何通過(guò)其強(qiáng)大的數(shù)據(jù)處理和分析能力,加速生命科學(xué)研究
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    人工智能在科學(xué)研究中的核心技術(shù),包括機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)等。這些技術(shù)構(gòu)成了AI for Science的基石,使得AI能夠處理和分析
    發(fā)表于 10-14 09:16

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第一章人工智能驅(qū)動(dòng)的科學(xué)創(chuàng)新學(xué)習(xí)心得

    人工智能:科學(xué)研究的加速器 第一章清晰地闡述了人工智能作為科學(xué)研究工具的強(qiáng)大功能。通過(guò)機(jī)器學(xué)習(xí)深度
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    定制性。這些特點(diǎn)使得RISC-V在多個(gè)領(lǐng)域,包括人工智能圖像處理領(lǐng)域,具有顯著的優(yōu)勢(shì)。 二、RISC-V在人工智能圖像處理中的優(yōu)勢(shì) 開(kāi)源性和靈活性 : RISC-V的開(kāi)源性意味著任何人都可以自由研究
    發(fā)表于 09-28 11:00

    人工智能ai4s試讀申請(qǐng)

    目前人工智能在繪畫(huà)對(duì)話(huà)等大模型領(lǐng)域應(yīng)用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個(gè)需要研究的課題,本書(shū)對(duì)ai4s基本原理和原則,方法進(jìn)行描訴,有利于總結(jié)經(jīng)驗(yàn),擬按照要求準(zhǔn)備相關(guān)體會(huì)材料??茨芊裼兄谌腴T(mén)和提高ss
    發(fā)表于 09-09 15:36

    名單公布!【書(shū)籍評(píng)測(cè)活動(dòng)NO.44】AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新

    大力發(fā)展AI for Science的原因。 第2章從科學(xué)研究底層的理論模式與主要困境,以及人工智能三要素(數(shù)據(jù)、算法、算力)出發(fā),對(duì)AI for Science的技術(shù)支撐進(jìn)行解讀。 第3章介紹了在
    發(fā)表于 09-09 13:54

    報(bào)名開(kāi)啟!深圳(國(guó)際)通用人工智能大會(huì)將啟幕,國(guó)內(nèi)外大咖齊聚話(huà)AI

    ,得到了華為、騰訊、優(yōu)必選、中煤科工、中國(guó)聯(lián)通、云天勵(lì)飛、考拉悠然、智航、力維智聯(lián)等國(guó)內(nèi)人工智能企業(yè)的深度參與和大力支持。 報(bào)名后即可到現(xiàn)場(chǎng)領(lǐng)取禮品,總計(jì)5000份,先到先選! 點(diǎn)擊報(bào)名:https://bbs.elecfans.com/jishu_2447254_1
    發(fā)表于 08-22 15:00

    FPGA在人工智能中的應(yīng)用有哪些?

    FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列)在人工智能領(lǐng)域的應(yīng)用非常廣泛,主要體現(xiàn)在以下幾個(gè)方面: 一、深度學(xué)習(xí)加速 訓(xùn)練和推理過(guò)程加速:FPGA可以用來(lái)加速深度學(xué)
    發(fā)表于 07-29 17:05