chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀(guān)看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何走向真正的人工智能

電子工程師 ? 來(lái)源:cc ? 2019-01-30 16:35 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

“「我們正在通往真正 AI 的路上」,現(xiàn)在走得并不遠(yuǎn),在出發(fā)點(diǎn)附近,人工智能永遠(yuǎn)在路上,大家要有思想準(zhǔn)備,這就是人工智能的魅力?!睆堚撛菏看舜窝葜v,字字珠璣,在現(xiàn)場(chǎng)聽(tīng)時(shí),如在大學(xué)的講堂,恍然大悟。從此,對(duì)于人工智能,不會(huì)被泡沫迷惑,也不會(huì)被悲觀(guān)左右。

我今天要講的中心思想就是:我們現(xiàn)在離真正的人工智能還有一段很長(zhǎng)的路。為了講清這個(gè)思想,我必須回答下面三個(gè)問(wèn)題:第一,什么叫做真正的人工智能?我們的目標(biāo)是什么?第二,為什么我們需要真正的人工智能?第三,我們?nèi)绾巫呦蛘嬲娜斯ぶ悄??我現(xiàn)在回答這三個(gè)問(wèn)題。

首先我們?nèi)绾卧u(píng)價(jià)目前人工智能取得的成果,我們的評(píng)價(jià)很簡(jiǎn)單,針對(duì)這 5 件事:

第一是深藍(lán)打敗人類(lèi)國(guó)際象棋冠軍;第二是 IBM 在電視知識(shí)競(jìng)賽中打敗了美國(guó)的前兩個(gè)冠軍,這兩件事是一種類(lèi)型,后面的三件事是另外一種類(lèi)型;即 2015 年微軟在 ImageNet 上做圖象識(shí)別,它的誤識(shí)率略低于人類(lèi)。還有百度、訊飛也都宣布在單句的中文語(yǔ)音識(shí)別上,它的誤識(shí)率也略低于人類(lèi)。還有一個(gè)是大家非常熟悉的 AlphaGo 打敗了李世石。這 5 件事情都是機(jī)器在一定的范圍內(nèi)超過(guò)了人類(lèi),我們?nèi)绾蝸?lái)評(píng)價(jià)這 5 件事?

大家一致認(rèn)為這 5 件事之所以成功,是由于前面三個(gè)因素,一是大數(shù)據(jù),二是計(jì)算能力提高,第三是有非常好的人工智能算法。這三個(gè)因素大家都討論得非常多了,沒(méi)必要我再來(lái)說(shuō),我現(xiàn)在要說(shuō)的最后一個(gè)因素是被大家所忽略的,這個(gè)因素是說(shuō),這所有的成果必須建立在一個(gè)合適的應(yīng)用場(chǎng)景下。這 5 件事雖然領(lǐng)域很不一樣,但是它們都滿(mǎn)足完全一樣的條件,或滿(mǎn)足下面的 5 個(gè)限制,首先你必須有豐富的數(shù)據(jù)或者豐富的知識(shí),如果這兩件東西沒(méi)有,或者很少,你不用來(lái)談人工智能,因?yàn)槟銦o(wú)法實(shí)現(xiàn)無(wú)米之炊。人工智能唯一的兩個(gè)資源,一個(gè)是數(shù)據(jù),一個(gè)是知識(shí)。還有確定性信息、完全信息、靜態(tài)的、單任務(wù)和有限領(lǐng)域。這 5 個(gè)條件里面任何一個(gè)條件不滿(mǎn)足,現(xiàn)在的人工智能做起來(lái)就非常困難了。

大家想想這 5 個(gè)限制條件下的應(yīng)用場(chǎng)景是什么樣的應(yīng)用場(chǎng)景?就是照章辦事,不需要任何靈活性,這顯然不是智能的核心。

我們現(xiàn)在分析一下上述 5 個(gè)場(chǎng)景。下象棋是完全信息博弈,信息完全和確定,沒(méi)有問(wèn)題。其次,它遵循著完全確定的游戲規(guī)則演化,我們把這種情況也叫做靜態(tài)。Watson 機(jī)器人也是這樣,Watson 是什么樣的對(duì)話(huà)問(wèn)題呢?它為什么選擇知識(shí)競(jìng)賽呢?我們知道知識(shí)競(jìng)賽提的問(wèn)題都沒(méi)有二義性,都是明確的,它的答案總是唯一性的。所以這樣的問(wèn)答對(duì)機(jī)器人來(lái)講是非常容易的。它涉及的領(lǐng)域雖然比較寬,但也是有限的,包括大家覺(jué)得很玄乎的圍棋,也完全符合上面 5 個(gè)條件,所以對(duì)計(jì)算機(jī)來(lái)說(shuō)也是很容易的。目前計(jì)算機(jī)打麻將就不行,因?yàn)榕祁?lèi)是不完全信息博弈,所以比棋類(lèi)要難??傊?,我們對(duì)目前人工智能取得的成果要有一個(gè)正確的評(píng)價(jià)。

目前的人工智能技術(shù)在以下領(lǐng)域都可以找到它的應(yīng)用,它們是交通、服務(wù)、教育、娛樂(lè)等等,但我要強(qiáng)調(diào)是這些領(lǐng)域里面只有滿(mǎn)足上述 5 個(gè)條件的事情,計(jì)算機(jī)做起來(lái)才會(huì)容易,如果不滿(mǎn)足這些條件,計(jì)算機(jī)就做起來(lái)就困難了。大家常常關(guān)心什么樣的工作會(huì)被機(jī)器所替代,我可以明確告訴大家,滿(mǎn)足這 5 個(gè)條件的工作,總有一天會(huì)被計(jì)算機(jī)取代,就是那些照章辦事,不需要任何靈活性的工作,比如說(shuō)出納員、收銀員等等。在座的所有工作都不可能被計(jì)算機(jī)完全代替,但不排斥你的工作中有一部分會(huì)被計(jì)算機(jī)取代,老師、企業(yè)家等的工作不可能被計(jì)算機(jī)完全代替。

為什么有這 5 個(gè)限制?原因在于我們現(xiàn)在的人工智能是沒(méi)有理解的人工智能。

我們先看符號(hào)模型,理性行為的模型,舉 Watson 的例子,它是個(gè)對(duì)話(huà)系統(tǒng),我們現(xiàn)在所有做的對(duì)話(huà)系統(tǒng)都跟這個(gè)差不多,但是 Watson 做得更好些,它里面有知識(shí)庫(kù),有推理機(jī)制。沃森除了專(zhuān)家知識(shí)之外,還有大量互聯(lián)網(wǎng)上大眾的知識(shí),還運(yùn)用了多推理機(jī)制。請(qǐng)看,這就是 Watson 系統(tǒng)的體系結(jié)構(gòu)。它里面有哪些知識(shí)呢?有很多,包括百科全書(shū)、有線(xiàn)新聞、文學(xué)作品等等。所有的知識(shí)用紙質(zhì)來(lái)表示有 2 億頁(yè),用存儲(chǔ)量表示達(dá)到了 4TB。它能回答什么問(wèn)題呢?用它的例子來(lái)說(shuō)明。第一個(gè)問(wèn)題,1974 年 9 月 8 日誰(shuí)被總統(tǒng)赦免?這對(duì)美國(guó)人來(lái)講很好回答,同樣對(duì)計(jì)算機(jī)來(lái)講也很好回答,你用這幾個(gè)關(guān)鍵字「1974 年 9 月 8 日」、「被總統(tǒng)赦免」,就能在文獻(xiàn)里頭查出來(lái)是誰(shuí),他就是尼克松。也就是說(shuō)根據(jù)問(wèn)題中的關(guān)鍵字,可以在已有的文獻(xiàn)里頭直接找到答案,這就是一般的網(wǎng)絡(luò)檢索方法。

第二個(gè)問(wèn)題,熒光粉受到電子撞擊以后,它的電磁能以什么方式釋放出來(lái)?我們用「熒光粉」、「電子撞擊」、「釋放電磁能」等關(guān)鍵詞,也可以找到答案:「光或者光子」。這種方法就是平時(shí)網(wǎng)絡(luò)搜索的原理,應(yīng)該說(shuō)沒(méi)有什么智能。

回答下面的問(wèn)題就需要「智能」了,跟智利陸地邊界最長(zhǎng)的是哪個(gè)國(guó)家?跟智利有陸地邊界的國(guó)家可以檢索到,它們是阿根廷和玻利維亞,但是誰(shuí)的邊境長(zhǎng)?通常查不到。Watson 具備一定的推理能力,它從邊界間發(fā)生的事件、邊界的地理位置等等,經(jīng)過(guò)分析推理以后就可以找出答案,它就是阿根廷。下一個(gè)問(wèn)題也屬于這種性質(zhì),跟美國(guó)沒(méi)有外交關(guān)系的國(guó)家中哪個(gè)最靠北,跟美國(guó)沒(méi)有外交關(guān)系的國(guó)家有 4 個(gè),只要檢索就行了,但是哪個(gè)國(guó)家最靠北,沒(méi)有直接答案,但可以從其它信息中推導(dǎo)出來(lái),比如各個(gè)國(guó)家所處的緯度、氣候寒冷的程度等等分析出來(lái),答案是北朝鮮。

智能體現(xiàn)在推理能力上。但是很不幸,現(xiàn)在的對(duì)話(huà)系統(tǒng)推理能力都很差。Watson 系統(tǒng)好一些,但也很有限。換句話(huà)說(shuō),我們現(xiàn)在的對(duì)話(huà)系統(tǒng)離真正的智能還很遠(yuǎn)。

我們通過(guò)索菲亞機(jī)器人就可以看出來(lái),索菲亞的對(duì)話(huà)是面向開(kāi)放領(lǐng)域,你可以隨便提問(wèn),問(wèn)題就暴露出來(lái)了。大家在電視上看到索菲亞侃侃而談,問(wèn)什么問(wèn)題都能答得很好,這里面有玄機(jī),如果你的問(wèn)題是預(yù)先提出來(lái)的,因?yàn)槔镱^有答案,因此回答得非常好,在電視上給大家演示的都是這種情況。

如果我們臨時(shí)提問(wèn)題,問(wèn)題就出來(lái)了。這是一個(gè)中國(guó)記者給索菲亞提的 4 個(gè)問(wèn)題,它只答對(duì)了一個(gè)?!改銕讱q了」,這個(gè)問(wèn)題很簡(jiǎn)單,它答不上來(lái),它的回答是「你好,你看起來(lái)不錯(cuò)」,答非所問(wèn),因?yàn)樗焕斫饽闼鶈?wèn)的問(wèn)題。只有第二個(gè)問(wèn)題它是有準(zhǔn)備的,里面有答案,所以答得很好?!改愕睦习迨钦l(shuí)」,這個(gè)肯定它有準(zhǔn)備。第三個(gè)問(wèn)題,「你能回答多少問(wèn)題呢」?它說(shuō)「請(qǐng)繼續(xù)」,沒(méi)聽(tīng)懂!。再問(wèn)第四個(gè)問(wèn)題,「你希望我問(wèn)你什么問(wèn)題呢」?它說(shuō)「你經(jīng)常在北京做戶(hù)外活動(dòng)嗎」?這就告訴我們說(shuō),現(xiàn)代的問(wèn)答系統(tǒng)基本上沒(méi)有理解,只有少數(shù)有少量的理解,像 Watson 這樣算是比較好的。

為什么會(huì)這樣?也就是說(shuō)我們現(xiàn)在的人工智能基本方法有缺陷,我們必須走向具有理解的 AI,這才是真正的人工智能。我這里提出的概念跟強(qiáng)人工智能有什么區(qū)別?首先我們說(shuō)它在這點(diǎn)上是相同的,我們都試圖去準(zhǔn)確地描述人類(lèi)的智能行為,希望人工智能跟人類(lèi)的智能相近,這也是強(qiáng)人工智能的一個(gè)目標(biāo),但是強(qiáng)人工智能只是從概念上提出來(lái),并沒(méi)有從方法上提出怎么解決。大家知道強(qiáng)人工智能提出了一個(gè)最主要的概念,就是通用人工智能。怎么個(gè)通用法?它沒(méi)有回答。我們現(xiàn)在提出來(lái)的有理解的人工智能是可操作的,不只是概念,這是我們跟強(qiáng)人工智能的區(qū)別。

人機(jī)對(duì)話(huà)的時(shí)候,機(jī)器為什么不能理解人們提的問(wèn)題。我們看一個(gè)例子就知道了,我們?cè)谥R(shí)庫(kù)里把「特朗普是美國(guó)總統(tǒng)」這個(gè)事實(shí),用「特朗普-總統(tǒng)-美國(guó)」這三元組存在計(jì)算機(jī)里面,如果你提的問(wèn)題是「誰(shuí)是美國(guó)總統(tǒng)」?機(jī)器馬上回答出來(lái):「特朗普」。但是你如果問(wèn)其它有關(guān)的問(wèn)題,如「特朗普是一個(gè)人嗎」?「特朗普是一個(gè)美國(guó)人嗎」?「美國(guó)有沒(méi)有總統(tǒng)」?它都回答不了。它太傻了,任何一個(gè)小學(xué)生,你只要告訴他特朗普是美國(guó)總統(tǒng),后面這幾個(gè)問(wèn)題他們絕對(duì)回答得出來(lái)。機(jī)器為什么回答不了后面的三個(gè)問(wèn)題呢?就是這個(gè)系統(tǒng)太笨了,沒(méi)有常識(shí),也沒(méi)有常識(shí)推理。既然特朗普是美國(guó)的總統(tǒng),美國(guó)當(dāng)然有總統(tǒng),但是它連這一點(diǎn)常識(shí)的推理能力都沒(méi)有。所以要解決這個(gè)問(wèn)題,必須在系統(tǒng)中加上常識(shí)庫(kù)、常識(shí)推理,沒(méi)有做到這一步,人機(jī)對(duì)話(huà)系統(tǒng)中機(jī)器不可能具有理解能力。但是大家知道,建立常識(shí)庫(kù)是一項(xiàng)「AI 的曼哈頓工程」。大家想想常識(shí)庫(kù)多么不好建,怎么告訴計(jì)算機(jī),什么叫吃飯,怎么告訴計(jì)算機(jī),什么叫睡覺(jué),什么叫做睡不著覺(jué),什么叫做夢(mèng),這些對(duì)人工智能來(lái)說(shuō)都非常難,美國(guó)在 1984 年就搞了這樣一個(gè)常識(shí)庫(kù)的工程,做到現(xiàn)在還沒(méi)完全做出來(lái)??梢?jiàn),要走向真正的人工智能,有理解的人工智能,是一條很漫長(zhǎng)的路。

這里介紹一點(diǎn)我們現(xiàn)在做的工作,加入常識(shí)以后,對(duì)話(huà)的性能會(huì)不會(huì)有所改善。我們的基本做法是建立一個(gè)常識(shí)圖譜,用這個(gè)圖譜幫助理解提出的「問(wèn)題」,同時(shí)利用常識(shí)圖譜幫助產(chǎn)生合適的答案。

下面就涉及到具體怎么做了,我不詳細(xì)說(shuō)了,我就說(shuō)結(jié)果,結(jié)果是有了常識(shí)以后,性能有了顯著的改善,對(duì)話(huà)的質(zhì)量提高了。這篇文章已經(jīng)發(fā)表,有興趣可以去閱讀。

另外是準(zhǔn)符號(hào)模型,深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)主要用來(lái)模擬感性行為,感性行為是一般很難采用符號(hào)模型,因?yàn)楦行裕ǜ杏X(jué))沒(méi)法精確描述。比如「馬」,怎么告訴計(jì)算機(jī)什么叫做馬?你說(shuō)馬有四條腿,什么叫做腿?你說(shuō)細(xì)長(zhǎng)的叫做腿,什么叫細(xì)?什么叫做長(zhǎng)?沒(méi)法告訴機(jī)器,因此不能用符號(hào)模型。目前用的辦法就是我們現(xiàn)在說(shuō)的神經(jīng)網(wǎng)絡(luò)或者準(zhǔn)符號(hào)模型,也就是用人類(lèi)同樣的辦法,學(xué)習(xí)、訓(xùn)練。我不告訴機(jī)器什么叫做馬,只是給不同的馬的圖片給它看,進(jìn)行訓(xùn)練。訓(xùn)練完以后,然后再用沒(méi)見(jiàn)過(guò)的馬的圖片給它看,說(shuō)對(duì)了,就是識(shí)別正確了,說(shuō)不對(duì)就是識(shí)別不正確,如果 90% 是對(duì)的,就說(shuō)明它的識(shí)別率是 90%。后來(lái)從淺層的神經(jīng)網(wǎng)絡(luò)又發(fā)展到多層的神經(jīng)網(wǎng)絡(luò),從淺層發(fā)展到多層有兩個(gè)本質(zhì)性的變化,一個(gè)本質(zhì)性的變化就是輸入,深層網(wǎng)絡(luò)一般不用人工選擇的特征,用原始數(shù)據(jù)就行。所以深度學(xué)習(xí)的應(yīng)用門(mén)檻降低了,你不要有專(zhuān)業(yè)知識(shí),把原始數(shù)據(jù)輸進(jìn)去就行了。第二個(gè)是它的性能提高很多,所以現(xiàn)在深度學(xué)習(xí)用得很多,原因就在這個(gè)地方。

通過(guò)數(shù)據(jù)驅(qū)動(dòng)建立的系統(tǒng)能不能算是有智能呢?必須打一個(gè)很大的問(wèn)號(hào),就是說(shuō)你做出來(lái)的人臉識(shí)別系統(tǒng)甚至識(shí)別率會(huì)比人還高,但是我們還不能說(shuō)它有智能,為什么呢?這種通過(guò)數(shù)據(jù)驅(qū)動(dòng)做出來(lái)的系統(tǒng),它的性能跟人類(lèi)差別非常大,魯棒性很差,很容易受干擾,會(huì)發(fā)生重大的錯(cuò)誤,需要大量的訓(xùn)練樣本。我們剛才已經(jīng)說(shuō)過(guò),給定一個(gè)圖像庫(kù)我們可以做到機(jī)器的識(shí)別率比人還要高,也就是說(shuō)它可以識(shí)別各種各樣的物體,但是這樣的系統(tǒng),我如果用這個(gè)噪聲輸給它,我可以讓它識(shí)別成為知更鳥(niǎo),我用另外的噪聲輸給它,可以讓它識(shí)別成為獵豹。換句話(huà)講,這樣的系統(tǒng)只是一個(gè)機(jī)械的分類(lèi)器,根本不是感知系統(tǒng)。也就是說(shuō)它盡管把各種各樣動(dòng)物分得很清楚,但是它不認(rèn)識(shí)這個(gè)動(dòng)物,它盡管可以把獵豹跟知更鳥(niǎo)分開(kāi),但是它本質(zhì)上不認(rèn)識(shí)知更鳥(niǎo)和獵豹,它只到達(dá)了感覺(jué)的水平,并沒(méi)有達(dá)到感知的水平,它只是「感」,沒(méi)有上升到「知」。我們的結(jié)論是,只依靠深度學(xué)習(xí)很難到達(dá)真正的智能。這是很?chē)?yán)峻的結(jié)論,因?yàn)槿绻羞@樣的問(wèn)題,在決策系統(tǒng)里頭是不能用這樣的系統(tǒng),因?yàn)樗鼤?huì)犯大錯(cuò)。我在很多場(chǎng)合講過(guò),人類(lèi)的最大的優(yōu)點(diǎn)是「小錯(cuò)不斷、大錯(cuò)不犯」,機(jī)器最大的缺點(diǎn)是「小錯(cuò)不犯,一犯就犯大錯(cuò)」。這在決策系統(tǒng)里頭是不允許的,這就顯示人跟機(jī)器的截然不同,人非常聰明,所以他做什么事都很靈活,這就使得他很容易犯各種各樣的小錯(cuò)。但是他很理性,很難發(fā)生大錯(cuò)。計(jì)算機(jī)很笨,但是很認(rèn)真,小錯(cuò)誤絕對(duì)不會(huì)犯,但是它一犯就是天大的錯(cuò)誤。剛才把那個(gè)把噪聲看成知更鳥(niǎo),這不是大錯(cuò)嗎?你把敵人的大炮看成一匹馬,不是大錯(cuò)嗎?但是人類(lèi)不會(huì)發(fā)生這種錯(cuò)誤,人類(lèi)只會(huì)把騾看成驢,但是計(jì)算機(jī)的識(shí)別系統(tǒng)會(huì)把驢看成一塊石頭。原因在哪兒?原因還是 AI 的理解能力問(wèn)題。

我們看這個(gè)自動(dòng)駕駛,過(guò)去講得很多,而且講得很樂(lè)觀(guān),我們看看問(wèn)題在什么地方。我們現(xiàn)在是這樣做,我們通過(guò)數(shù)據(jù)驅(qū)動(dòng)的學(xué)習(xí)方法,學(xué)習(xí)不同場(chǎng)景下的圖象分割,并判別是車(chē)輛還是行人、道路等,然后建立三維模型,在三維模型上規(guī)劃行駛路徑?,F(xiàn)在用硬件已經(jīng)可以做到實(shí)時(shí),請(qǐng)問(wèn)大家,這樣能不能解決問(wèn)題?如果路況比較簡(jiǎn)單,行人、車(chē)輛很少,勉強(qiáng)可以用。復(fù)雜的路況就用不了。什么原因?非常簡(jiǎn)單,好多人總結(jié)出這個(gè)經(jīng)驗(yàn),行人或者司機(jī)都會(huì)有意無(wú)意破壞交通規(guī)則,包括外國(guó)人也一樣,中國(guó)人更嚴(yán)重一點(diǎn)。這就使得數(shù)據(jù)驅(qū)動(dòng)方法失效,比如說(shuō)我們可以用數(shù)據(jù)驅(qū)動(dòng)方法來(lái)了解各種各樣行人的行為,我們可以通過(guò)大量進(jìn)行訓(xùn)練,都訓(xùn)練完以后,如果出現(xiàn)新的情況呢?計(jì)算機(jī)能理解這是人從底下鉆過(guò)來(lái),很危險(xiǎn)嗎?所以你不可能把所有情況都訓(xùn)練到。自動(dòng)駕駛不可能對(duì)付突發(fā)事件,如果這個(gè)突發(fā)事件它沒(méi)見(jiàn)過(guò),它就解決不了。怎么來(lái)解決這個(gè)問(wèn)題呢?實(shí)際上就是要解決從「Without」到「With」理解的問(wèn)題。人工智能現(xiàn)在有兩種基本方法,一種是用符號(hào)模型來(lái)模擬理性行為,符號(hào)模型可以表達(dá)信息的內(nèi)容,所以它是在一個(gè)語(yǔ)義的符號(hào)空間里頭,但是非常不幸,這個(gè)離散的符號(hào)表示,數(shù)學(xué)工具很難用,很多數(shù)學(xué)工具用不上去,所以它發(fā)展很慢。在模擬感性行為的時(shí)候,我們用的是特征空間的向量,向量就是數(shù),可以把所有的數(shù)學(xué)工具都用上,優(yōu)化的工具、概率統(tǒng)計(jì)的工具全部用上。所以數(shù)據(jù)驅(qū)動(dòng)方法這幾年發(fā)展非???,再難的問(wèn)題,下圍棋非常難吧,計(jì)算機(jī)也可以「算」出來(lái)。但是它有一個(gè)非常大的缺陷,它是在特征空間里,缺乏語(yǔ)義。我們用數(shù)據(jù)去訓(xùn)練一個(gè)模型,所謂「黑箱學(xué)習(xí)法」,加上你的數(shù)據(jù)質(zhì)量不高,很難學(xué)出有用的東西。什么叫概率統(tǒng)計(jì)?重復(fù)多了就是真理。如果數(shù)據(jù)質(zhì)量差,充滿(mǎn)了「謊言」。謊言重復(fù)多了,就變成真理了。

我們現(xiàn)在想出的解決辦法是這樣的,就是把這兩個(gè)空間投射到一個(gè)空間去,這個(gè)空間叫做語(yǔ)義的向量空間。也就是說(shuō)我們把符號(hào)變成向量,同時(shí)把特征空間的向量變成語(yǔ)義空間的向量。怎么做?一是通過(guò) Embedding(嵌入)把符號(hào)變成向量,盡量保持語(yǔ)義不變,可惜現(xiàn)在的方法都會(huì)引起語(yǔ)義的丟失,我們只能在投射的過(guò)程中讓語(yǔ)義丟失得少。第二方面做的工作比較少,就是 Raising(提升),把特征空間提升到語(yǔ)義空間去,這主要靠學(xué)科交叉,靠跟神經(jīng)科學(xué)的結(jié)合。只有這些問(wèn)題解決以后,我們才能夠建立一個(gè)統(tǒng)一的理論,因?yàn)檫^(guò)去的感知和認(rèn)知是不同的處理方法,大家說(shuō)不到一塊,如果我們能夠投射到同一空間去,我們就可以建立一個(gè)統(tǒng)一的理論框架,這是我們的目標(biāo)。在語(yǔ)義空間處理就可以解決理解問(wèn)題,但是這項(xiàng)工作是非常艱巨的。

介紹一項(xiàng)我們現(xiàn)在做的工作。人工神經(jīng)網(wǎng)絡(luò)為什么不能得到語(yǔ)義信息呢?人腦的神經(jīng)網(wǎng)絡(luò)為什么可以呢?差別就在這里,我們現(xiàn)在用的人工神經(jīng)網(wǎng)絡(luò)太簡(jiǎn)單了,我們正想辦法把腦神經(jīng)網(wǎng)絡(luò)的許多結(jié)構(gòu)與功能加進(jìn)去,我們這里只用了「稀疏發(fā)電」這一性質(zhì),就可以看出一些效果,人臉、大象或者鳥(niǎo)的輪廓,神經(jīng)網(wǎng)絡(luò)可以把它提取出來(lái)。

還有一個(gè)辦法就是把數(shù)據(jù)驅(qū)動(dòng)跟知識(shí)驅(qū)動(dòng)結(jié)合起來(lái)。剛才講了,人的智能沒(méi)法通過(guò)單純的大數(shù)據(jù)學(xué)習(xí)把它學(xué)出來(lái),那怎么辦?很簡(jiǎn)單,加上知識(shí),讓它有推理的能力,做決策的能力,這樣就能解決突發(fā)事件。我們現(xiàn)在做的工作就是把這些結(jié)合起來(lái),這是我們的基本思路,知識(shí)也好,數(shù)據(jù)也好,都投射到同一空間,然后都用同樣的數(shù)學(xué)方法進(jìn)行處理,這方面我們已經(jīng)做了不少工作。

最后做一個(gè)總結(jié),我們從這個(gè)坐標(biāo)看人工智能,橫軸代表領(lǐng)域的寬窄,從單領(lǐng)域到多領(lǐng)域、到開(kāi)放領(lǐng)域??v軸代表信息的確定性與完全性,從完全到不完全、從確定到不確定。在左下角代表最容易的,就是剛才講的符合 5 個(gè)條件的,現(xiàn)在人工智能在這部分解決得非常好,我們用白色來(lái)表示它,AlphaGo 在這里,深藍(lán)在這里,工業(yè)機(jī)器人在這里?,F(xiàn)在我們正在向灰色地區(qū)去走,打牌,信息不完全,現(xiàn)在打德州撲克,一人對(duì)一人,計(jì)算機(jī)能戰(zhàn)勝人類(lèi),多人對(duì)弈,計(jì)算機(jī)還不行,這是灰色地帶,我們還可以做,為什么可以做?盡管打牌是不確定的,但是它在概率意義下是確定的,你拿的這副牌的概率,可以算出來(lái),同花的概率是多少,排成順的概率是多少,既然概率能算出來(lái),最終人類(lèi)肯定會(huì)被計(jì)算機(jī)打敗。Watson 在右邊,它的領(lǐng)域比較寬,但是它是確定性的,所以是在灰色的區(qū)域。往右上方去就比較難了,自動(dòng)駕駛、服務(wù)機(jī)器人、大數(shù)據(jù)分析,它是一個(gè)大框,有的簡(jiǎn)單,有的困難,就自動(dòng)駕駛來(lái)講,專(zhuān)用道、行車(chē)很少,路況簡(jiǎn)單等,在白色或者灰色區(qū),如果路況復(fù)雜就到了黃色區(qū)域,黃色區(qū)現(xiàn)在計(jì)算機(jī)還解決不好。最遠(yuǎn)的在哪兒呢?右上角,圖靈測(cè)試。大家對(duì)圖靈測(cè)試有很多誤解,其實(shí)圖靈測(cè)試是開(kāi)領(lǐng)域問(wèn)答,很難!索菲亞做得怎么樣?很糟糕。自然語(yǔ)言理解也在這里,復(fù)雜環(huán)境下的決策在偏左一點(diǎn)的地方,這也是很難的。所以我們?nèi)斯ぶ悄墁F(xiàn)在是從左下角往右上角走,我們現(xiàn)在處在出發(fā)點(diǎn)附近。有的人想把它用一些名詞來(lái)區(qū)分人工智能的不同發(fā)展階段,有專(zhuān)家問(wèn)我,你的看法怎么樣?我建議不要用新詞,用新詞往往說(shuō)不清,很麻煩,有的人說(shuō)現(xiàn)在是弱人工智能,以后是強(qiáng)人工智能,也有人說(shuō)現(xiàn)在叫增強(qiáng)智能(Augmented Intelligence)也是 AI……概念太多說(shuō)不清,還是簡(jiǎn)單一點(diǎn),「我們正在通往真正 AI 的路上」,現(xiàn)在走得并不遠(yuǎn),在出發(fā)點(diǎn)附近,人工智能永遠(yuǎn)在路上,大家要有思想準(zhǔn)備,這就是人工智能的魅力。大家為什么這么重視人工智能?因?yàn)槲覀冇肋h(yuǎn)在路上,這就吸引我們?nèi)ソ鉀Q這些問(wèn)題,這些問(wèn)題一旦解決了,人類(lèi)的社會(huì)進(jìn)步、人類(lèi)的生活就會(huì)發(fā)生本質(zhì)上的改變。

最后我用中文寫(xiě)最后一段作為總結(jié),可惜我翻譯不了。

周穆王西巡狩,路遇匠人名偃師。翌日偃師謁見(jiàn)王,偕來(lái)一個(gè)假人?!岗叢礁┭觯湃艘病??!割I(lǐng)其顱,則歌合律;捧其手,則舞應(yīng)節(jié)。千變?nèi)f化,惟意所適。王以為實(shí)人也,與盛姫內(nèi)御并觀(guān)之,技將終,倡者瞬其目而招王之左右侍妾。王大怒,要?dú)⑦@個(gè)偃師。偃師大懾,立剖其倡者以示王,皆傅會(huì)革、木、膠、漆、白 、黑、丹、青之所為。穆王始悅,詔貳車(chē)載之以歸。

這是 3000 年前我們古人對(duì)機(jī)器人的想象,看看現(xiàn)在的人工智能做得怎么樣呢?索菲亞是我們現(xiàn)在達(dá)到的水平,可是她不會(huì)唱歌、不會(huì)跳舞,只會(huì)說(shuō)英文,周王也聽(tīng)不懂,肯定沒(méi)有印象。現(xiàn)在我們假設(shè)索菲亞「瞬其目而招王之左右侍妾」,向周王的姨太太們送去秋波,王會(huì)如何呢?我認(rèn)為沒(méi)反應(yīng),因?yàn)樗鞣苼喪桥?,他用不著吃醋。但是我們假設(shè)索菲亞「瞬其目而招王」,向大王送去秋波,王會(huì)大悅,立即神魂顛倒,墜入愛(ài)河?我認(rèn)為不會(huì),因?yàn)樗鞣苼喐静幌袢耍罱艅倓偘采鲜帜_,走路都不利索,怎么行呢?所以我的結(jié)論是,「索菲亞通不過(guò)穆王的測(cè)試,當(dāng)然它更通不過(guò)圖靈測(cè)試」。

我們的結(jié)論是什么?人工智能剛剛起步,離真正的 AI 還很遙遠(yuǎn),大家共同努力吧,我們?nèi)沃氐肋h(yuǎn)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀(guān)點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    37165

    瀏覽量

    291437
  • 人工智能
    +關(guān)注

    關(guān)注

    1812

    文章

    49529

    瀏覽量

    259079

原文標(biāo)題:清華張鈸院士:走向真正的人工智能

文章出處:【微信號(hào):BIEIqbs,微信公眾號(hào):北京市電子科技情報(bào)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    重磅來(lái)襲!2026全球人工智能終端展暨第七屆深圳人工智能展覽會(huì)

    深圳國(guó)際人工智能展深耕六載,始終緊跟國(guó)家人工智能發(fā)展方向,通過(guò)搭建人工智能技術(shù)與行業(yè)對(duì)話(huà)的展示平臺(tái),致力于人工智能產(chǎn)業(yè)鏈上下游的深度聯(lián)動(dòng)與資源精準(zhǔn)對(duì)接,為創(chuàng)新成果從研發(fā)到生產(chǎn)再到消費(fèi)端
    的頭像 發(fā)表于 08-26 18:02 ?312次閱讀

    挖到寶了!人工智能綜合實(shí)驗(yàn)箱,高校新工科的寶藏神器

    的深度學(xué)習(xí),構(gòu)建起從基礎(chǔ)到前沿的完整知識(shí)體系,一門(mén)實(shí)驗(yàn)箱就能滿(mǎn)足多門(mén)課程的學(xué)習(xí)實(shí)踐需求,既節(jié)省經(jīng)費(fèi)又不占地 。 五、代碼全開(kāi)源,學(xué)習(xí)底層算法 所有實(shí)驗(yàn)全部開(kāi)源,這對(duì)于想要深入學(xué)習(xí)人工智能技術(shù)的人來(lái)說(shuō)
    發(fā)表于 08-07 14:30

    挖到寶了!比鄰星人工智能綜合實(shí)驗(yàn)箱,高校新工科的寶藏神器!

    的深度學(xué)習(xí),構(gòu)建起從基礎(chǔ)到前沿的完整知識(shí)體系,一門(mén)實(shí)驗(yàn)箱就能滿(mǎn)足多門(mén)課程的學(xué)習(xí)實(shí)踐需求,既節(jié)省經(jīng)費(fèi)又不占地 。 五、代碼全開(kāi)源,學(xué)習(xí)底層算法 所有實(shí)驗(yàn)全部開(kāi)源,這對(duì)于想要深入學(xué)習(xí)人工智能技術(shù)的人來(lái)說(shuō)
    發(fā)表于 08-07 14:23

    關(guān)于人工智能處理器的11個(gè)誤解

    應(yīng)用,以及哪些是真實(shí)情況而哪些只是炒作,仍存在諸多誤解。GPU是最佳的人工智能處理器盡管GPU在人工智能的實(shí)現(xiàn)過(guò)程中發(fā)揮了關(guān)鍵作用,而且如今它們的應(yīng)用也極為廣泛,但將其推
    的頭像 發(fā)表于 08-07 13:21 ?757次閱讀
    關(guān)于<b class='flag-5'>人工智能</b>處理器的11個(gè)誤解

    2025人工智能十大趨勢(shì)

    ,通過(guò)10個(gè)關(guān)鍵趨勢(shì)勾勒出2025人工智能發(fā)展的三大主題基礎(chǔ)模型的躍遷、智能行動(dòng)者的崛起以及AI走向物理世界,深入剖析了AI從“智能工具”邁向“共生伙伴”的關(guān)鍵躍
    的頭像 發(fā)表于 08-05 11:42 ?4577次閱讀
    2025<b class='flag-5'>人工智能</b>十大趨勢(shì)

    迅為RK3588開(kāi)發(fā)板Linux安卓麒麟瑞芯微國(guó)產(chǎn)工業(yè)AI人工智能

    迅為RK3588開(kāi)發(fā)板Linux安卓麒麟瑞芯微國(guó)產(chǎn)工業(yè)AI人工智能
    發(fā)表于 07-14 11:23

    最新人工智能硬件培訓(xùn)AI 基礎(chǔ)入門(mén)學(xué)習(xí)課程參考2025版(大模型篇)

    人工智能大模型重塑教育與社會(huì)發(fā)展的當(dāng)下,無(wú)論是探索未來(lái)職業(yè)方向,還是更新技術(shù)儲(chǔ)備,掌握大模型知識(shí)都已成為新時(shí)代的必修課。從職場(chǎng)上輔助工作的智能助手,到課堂用于學(xué)術(shù)研究的智能工具,大模型正在工作生活
    發(fā)表于 07-04 11:10

    維智科技為什么提出時(shí)空人工智能

    在AI技術(shù)突飛猛進(jìn)的今天,語(yǔ)言、圖像和語(yǔ)音的智能能力不斷突破,但一個(gè)更本質(zhì)的問(wèn)題逐漸顯現(xiàn):人工智能真的理解我們所處的空間世界嗎?從智能城市到商業(yè)選址,從應(yīng)急調(diào)度到人機(jī)交互,AI正走向
    的頭像 發(fā)表于 06-12 14:30 ?640次閱讀

    開(kāi)售RK3576 高性能人工智能主板

    ,HDMI-4K 輸出,支 持千兆以太網(wǎng),WiFi,USB 擴(kuò)展/重力感應(yīng)/RS232/RS485/IO 擴(kuò)展/I2C 擴(kuò)展/MIPI 攝像頭/紅外遙控 器等功能,豐富的接口,一個(gè)全新八核擁有超強(qiáng)性能的人工智能
    發(fā)表于 04-23 10:55

    人工智能大模型年度發(fā)展趨勢(shì)報(bào)告

    2024年12月的中央經(jīng)濟(jì)工作會(huì)議明確把開(kāi)展“人工智能+”行動(dòng)作為2025年要抓好的重點(diǎn)任務(wù)。當(dāng)前,以大模型為代表的人工智能正快速演進(jìn),激發(fā)全球科技之變、產(chǎn)業(yè)之變、時(shí)代之變,人工智能發(fā)展迎來(lái)新高潮。隨著大模型推理、多模
    的頭像 發(fā)表于 02-13 10:57 ?1281次閱讀
    <b class='flag-5'>人工智能</b>大模型年度發(fā)展趨勢(shì)報(bào)告

    Embarcadero:人工智能驅(qū)動(dòng)發(fā)展我們的期望是什么

    發(fā)展的方向。 這是一張?jiān)趕implified.com上,通過(guò)提示“屏幕上有人工智能的筆記本電腦”而生成的人工智能圖像。這一實(shí)現(xiàn)令人印象深刻,但同樣任重道遠(yuǎn)。圖像和電影比文本更難處理。難度超過(guò)代碼了嗎? 當(dāng)今的人工智能 在遠(yuǎn)程服務(wù)
    的頭像 發(fā)表于 01-15 10:46 ?589次閱讀

    人工智能推理及神經(jīng)處理的未來(lái)

    、個(gè)性化和效率的社會(huì)需求,又進(jìn)一步推動(dòng)了人工智能技術(shù)的集成。此外,不斷發(fā)展的監(jiān)管體系,則強(qiáng)調(diào)了合乎倫理道德的人工智能、數(shù)據(jù)隱私和算法透明度的重要性,進(jìn)而指導(dǎo)人工
    的頭像 發(fā)表于 12-23 11:18 ?789次閱讀
    <b class='flag-5'>人工智能</b>推理及神經(jīng)處理的未來(lái)

    嵌入式和人工智能究竟是什么關(guān)系?

    嵌入式和人工智能究竟是什么關(guān)系? 嵌入式系統(tǒng)是一種特殊的系統(tǒng),它通常被嵌入到其他設(shè)備或機(jī)器中,以實(shí)現(xiàn)特定功能。嵌入式系統(tǒng)具有非常強(qiáng)的適應(yīng)性和靈活性,能夠根據(jù)用戶(hù)需求進(jìn)行定制化設(shè)計(jì)。它廣泛應(yīng)用于各種
    發(fā)表于 11-14 16:39

    萬(wàn)集科技受邀參加北汽人工智能科技日活動(dòng)

    近日,萬(wàn)集科技受邀參加了由北汽新能源舉辦的人工智能科技日活動(dòng)。此次活動(dòng)匯聚了眾多人工智能領(lǐng)域的領(lǐng)先企業(yè)及科研機(jī)構(gòu),共同探討人工智能技術(shù)如何推動(dòng)智能網(wǎng)聯(lián)汽車(chē)產(chǎn)業(yè)的升級(jí)與發(fā)展。
    的頭像 發(fā)表于 11-13 16:41 ?996次閱讀

    FPGA應(yīng)用于人工智能的趨勢(shì)

    高速和低功耗 : FPGA通過(guò)優(yōu)化硬件結(jié)構(gòu)和算法實(shí)現(xiàn),能夠在處理復(fù)雜的人工智能任務(wù)時(shí)保持高速和低功耗,這對(duì)于資源有限的嵌入式系統(tǒng)和移動(dòng)設(shè)備尤為重要。 靈活性 : FPGA的可編程性使得它能夠根據(jù)特定的需求進(jìn)行定制化設(shè)計(jì),適應(yīng)不同的算法和應(yīng)用
    的頭像 發(fā)表于 10-25 09:20 ?2630次閱讀