chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

機器學習與深度學習之間比較

電子工程師 ? 來源:yxw ? 2019-05-11 10:13 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近年來,隨著科技的快速發(fā)展,人工智能不斷進入我們的視野中。作為人工智能的核心技術(shù),機器學習深度學習也變得越來越火。一時間,它們幾乎成為了每個人都在談論的話題。那么,機器學習和深度學習到底是什么,它們之間究竟有什么不同呢?

什么是機器學習?

機器學習(Machine Learning,ML)是人工智能的子領域,也是人工智能的核心。它囊括了幾乎所有對世界影響最大的方法(包括深度學習)。機器學習理論主要是設計和分析一些讓計算機可以自動學習的算法。

舉個例子,假設要構(gòu)建一個識別貓的程序。傳統(tǒng)上如果我們想讓計算機進行識別,需要輸入一串指令,例如貓長著毛茸茸的毛、頂著一對三角形的的耳朵等,然后計算機根據(jù)這些指令執(zhí)行下去。但是如果我們對程序展示一只老虎的照片,程序應該如何反應呢?更何況通過傳統(tǒng)方式要制定全部所需的規(guī)則,而且在此過程中必然會涉及到一些困難的概念,比如對毛茸茸的定義。因此,更好的方式是讓機器自學。

我們可以為計算機提供大量的貓的照片,系統(tǒng)將以自己特有的方式查看這些照片。隨著實驗的反復進行,系統(tǒng)會不斷學習更新,最終能夠準確地判斷出哪些是貓,哪些不是貓。

什么是深度學習?

深度學習(DeepLearning,DL)屬于機器學習的子類。它的靈感來源于人類大腦的工作方式,是利用深度神經(jīng)網(wǎng)絡來解決特征表達的一種學習過程。深度神經(jīng)網(wǎng)絡本身并非是一個全新的概念,可理解為包含多個隱含層的神經(jīng)網(wǎng)絡結(jié)構(gòu)。為了提高深層神經(jīng)網(wǎng)絡的訓練效果,人們對神經(jīng)元的連接方法以及激活函數(shù)等方面做出了調(diào)整。其目的在于建立、模擬人腦進行分析學習的神經(jīng)網(wǎng)絡,模仿人腦的機制來解釋數(shù)據(jù),如文本、圖像、聲音。

機器學習與深度學習的比較

1、應用場景

機器學習在指紋識別、特征物體檢測等領域的應用基本達到了商業(yè)化的要求。

深度學習主要應用于文字識別、人臉技術(shù)、語義分析、智能監(jiān)控等領域。目前在智能硬件、教育、醫(yī)療等行業(yè)也在快速布局。

2、所需數(shù)據(jù)量

機器學習能夠適應各種數(shù)據(jù)量,特別是數(shù)據(jù)量較小的場景。如果數(shù)據(jù)量迅速增加,那么深度學習的效果將更加突出,這是因為深度學習算法需要大量數(shù)據(jù)才能完美理解。

3、執(zhí)行時間

執(zhí)行時間是指訓練算法所需要的時間量。一般來說,深度學習算法需要大量時間進行訓練。這是因為該算法包含有很多參數(shù),因此訓練它們需要比平時更長的時間。相對而言,機器學習算法的執(zhí)行時間更少。

4、解決問題的方法

機器學習算法遵循標準程序以解決問題。它將問題拆分成數(shù)個部分,對其進行分別解決,而后再將結(jié)果結(jié)合起來以獲得所需的答案。深度學習則以集中方式解決問題,而不必進行問題拆分。

在本文中,我們對機器學習與深度學習的區(qū)別作出了簡要概述。目前,這兩種算法已被廣泛應用于商業(yè)領域,相信在未來,機器學習與深度學習能夠為更多行業(yè)帶來令人激動的光明前景。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1811

    文章

    49497

    瀏覽量

    258147
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    如何在機器視覺中部署深度學習神經(jīng)網(wǎng)絡

    人士而言往往難以理解,人們也常常誤以為需要扎實的編程技能才能真正掌握并合理使用這項技術(shù)。事實上,這種印象忽視了該技術(shù)為機器視覺(乃至生產(chǎn)自動化)帶來的潛力,因為深度學習并非只屬于計算機科學家或程序員。 從頭開始:什么
    的頭像 發(fā)表于 09-10 17:38 ?502次閱讀
    如何在<b class='flag-5'>機器</b>視覺中部署<b class='flag-5'>深度</b><b class='flag-5'>學習</b>神經(jīng)網(wǎng)絡

    SLAMTEC Aurora:把深度學習“卷”進機器人日常

    在人工智能和機器人技術(shù)飛速發(fā)展的今天,深度學習與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領著智能機器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡直殺瘋了!靠著逆天的
    的頭像 發(fā)表于 02-19 15:49 ?618次閱讀

    軍事應用中深度學習的挑戰(zhàn)與機遇

    人工智能尤其是深度學習技術(shù)的最新進展,加速了不同應用領域的創(chuàng)新與發(fā)展。深度學習技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?710次閱讀

    BP神經(jīng)網(wǎng)絡與深度學習的關(guān)系

    BP神經(jīng)網(wǎng)絡與深度學習之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡的基本概念 BP神經(jīng)網(wǎng)絡,即反向傳播神經(jīng)網(wǎng)絡(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1180次閱讀

    傳統(tǒng)機器學習方法和應用指導

    用于開發(fā)生物學數(shù)據(jù)的機器學習方法。盡管深度學習(一般指神經(jīng)網(wǎng)絡算法)是一個強大的工具,目前也非常流行,但它的應用領域仍然有限。與深度
    的頭像 發(fā)表于 12-30 09:16 ?1580次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應用指導

    什么是機器學習?通過機器學習方法能解決哪些問題?

    來源:Master編程樹“機器學習”最初的研究動機是讓計算機系統(tǒng)具有人的學習能力以便實現(xiàn)人工智能。因為沒有學習能力的系統(tǒng)很難被認為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?1341次閱讀
    什么是<b class='flag-5'>機器</b><b class='flag-5'>學習</b>?通過<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法能解決哪些問題?

    NPU與機器學習算法的關(guān)系

    在人工智能領域,機器學習算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學習
    的頭像 發(fā)表于 11-15 09:19 ?1663次閱讀

    NPU在深度學習中的應用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學習作為其核心驅(qū)動力之一,已經(jīng)在眾多領域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡處理單元)是專門為深度學習
    的頭像 發(fā)表于 11-14 15:17 ?2542次閱讀

    pcie在深度學習中的應用

    深度學習模型通常需要大量的數(shù)據(jù)和強大的計算能力來訓練。傳統(tǒng)的CPU計算資源有限,難以滿足深度學習的需求。因此,GPU(圖形處理單元)和TPU(張量處理單元)等專用硬件應運而生,它們通過
    的頭像 發(fā)表于 11-13 10:39 ?1666次閱讀

    AI干貨補給站 | 深度學習機器視覺的融合探索

    ,幫助從業(yè)者積累行業(yè)知識,推動工業(yè)視覺應用的快速落地。本期亮點預告本期將以“深度學習機器視覺的融合探索”為主題,通過講解深度學習定義、傳統(tǒng)
    的頭像 發(fā)表于 10-29 08:04 ?709次閱讀
    AI干貨補給站 | <b class='flag-5'>深度</b><b class='flag-5'>學習</b>與<b class='flag-5'>機器</b>視覺的融合探索

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學習訓練。
    的頭像 發(fā)表于 10-28 14:05 ?891次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學習</b>訓練的方法

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發(fā)表于 10-27 11:13 ?1901次閱讀

    激光雷達技術(shù)的基于深度學習的進步

    信息。這使得激光雷達在自動駕駛、無人機、機器人等領域具有廣泛的應用前景。 二、深度學習技術(shù)的發(fā)展 深度學習
    的頭像 發(fā)表于 10-27 10:57 ?1323次閱讀

    人工智能、機器學習深度學習存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設備。AI有很多技術(shù),但其中一個很大的子集是機器學習——讓算法從數(shù)據(jù)中學習
    發(fā)表于 10-24 17:22 ?3312次閱讀
    人工智能、<b class='flag-5'>機器</b><b class='flag-5'>學習</b>和<b class='flag-5'>深度</b><b class='flag-5'>學習</b>存在什么區(qū)別

    AI大模型與深度學習的關(guān)系

    AI大模型與深度學習之間存在著密不可分的關(guān)系,它們互為促進,相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學習是AI大模型的基礎 技術(shù)支撐 :
    的頭像 發(fā)表于 10-23 15:25 ?3377次閱讀