chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

在深度學(xué)習(xí)如日中天的現(xiàn)在,三巨頭又在忙活著什么?

lviY_AI_shequ ? 來(lái)源:lp ? 2019-04-13 10:43 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

上上周,AI圈最大的事情,沒(méi)有之一,就是圖靈獎(jiǎng),終于終于,終于頒給了深度學(xué)習(xí)三巨頭。

關(guān)于GeoffreyHinton和他的兩位學(xué)生YoshuaBengio、YannLeCun的故事,在消息出來(lái)后的幾天里,理所當(dāng)然完成了刷屏。

即使AI從業(yè)者和愛(ài)好者基本已經(jīng)對(duì)這三位的事跡耳熟能詳,但他們“高舉著火焰,沖過(guò)了最黑暗的時(shí)代”的英雄主義情結(jié),還是能夠輕易讓遠(yuǎn)離AI世界的人們動(dòng)容。

“三巨頭”和深度學(xué)習(xí)的經(jīng)歷,事實(shí)上是一幕從學(xué)術(shù)邊緣開(kāi)始,在產(chǎn)業(yè)狂歡中自證,再回頭征服主流學(xué)術(shù)界的故事。起伏線索簡(jiǎn)直比好萊塢大片還要好萊塢。

然而現(xiàn)實(shí)人生和電影最大的區(qū)別或許在于,電影可以在高潮處戛然而止,留給觀眾意味深長(zhǎng)的壯美。但生活還要繼續(xù),日子還得過(guò),AI還得發(fā)展。深度學(xué)習(xí)并不會(huì)因?yàn)閳D靈獎(jiǎng)的到來(lái)而畫(huà)上圓滿的句號(hào)。

如果說(shuō)三巨頭在全世界都不相信深度學(xué)習(xí)時(shí)的執(zhí)拗,最終換來(lái)了圖靈獎(jiǎng)和一句句“泰斗”的贊美聲;那么我們今天更應(yīng)該留意的,或許是在深度學(xué)習(xí)如日中天的現(xiàn)在,三巨頭又在忙活著什么?他們現(xiàn)在所忙的,是不是又映射著AI的未來(lái)?

咱們不妨換個(gè)角度,不說(shuō)他們可歌可泣的當(dāng)年,而是聊聊三巨頭的現(xiàn)在。

需要注意的是,這里并不打算把三人及團(tuán)隊(duì)的每一篇論文都整理出來(lái),而是希望從他們?cè)贏I爆發(fā)之際的選擇,讀出些許關(guān)于深度學(xué)習(xí)未來(lái)走勢(shì)與先天不足的底層規(guī)律。

YannLeCun:

產(chǎn)學(xué)候鳥(niǎo)與AI圈魯迅

三巨頭中最頻繁活躍在大眾視線里的,是YannLeCun。

為什么很多不認(rèn)識(shí)Hinton的人也認(rèn)識(shí)YannLeCun?這個(gè)AI界的未解之謎有很多解釋。

不靠譜的解釋包括,YannLeCun這個(gè)名字非常適合寫(xiě)成楊麗坤,所以好記。再比如說(shuō)他的招牌式笑容很容易讓人覺(jué)得AI沒(méi)那么枯燥。

而靠譜的解釋是,YannLeCun是三人中進(jìn)入產(chǎn)業(yè)世界程度最深的那一位,甚至一度被視作AI科學(xué)家走向商業(yè)世界的代表人物。

2013年,YannLeCun突然加入Facebook是一件非常有爆炸力的事。大家既不理解Facebook要AI科學(xué)家干嘛,也不明白YannLeCun去一個(gè)社交媒體做什么。

來(lái)到Facebook之后,YannLeCun一手創(chuàng)立了FAIR。這不是個(gè)律師事務(wù)所,而是Facebook人工智能實(shí)驗(yàn)室。

必須要承認(rèn),作為FAIR一把手的YannLeCun,在那幾年間是有不少作為的。比如大幅度提升了Facebook的自動(dòng)化運(yùn)營(yíng)能力,提高了廣告等Facebook生命線的智能化程度。而另一方面,充滿理想主義精神和學(xué)者氣息的YannLeCun還把FAIR搞成了硅谷最有烏托邦味道的實(shí)驗(yàn)室之一。

在Facebook,F(xiàn)AIR的專家們關(guān)注那些天馬行空的前瞻性技術(shù),以及AI如何在未來(lái)造福全人類。在扎克伯格的默許與支持下,F(xiàn)AIR的紅火甚至一度被認(rèn)為是硅谷的工程師文化要向科學(xué)家文化交槍。

此外,YannLeCun個(gè)人魅力也成為Facebook快速招到頂級(jí)科學(xué)家的利器,5年中,F(xiàn)AIR擴(kuò)大到6個(gè)辦公地點(diǎn),有近100名研究員。與吳恩達(dá)、李飛飛并列,YannLeCun也被稱為由學(xué)校到企業(yè)的三位AI明星之一。

但隨著團(tuán)隊(duì)規(guī)模的不斷擴(kuò)大,YannLeCun作為理想派科學(xué)家,逐漸暴露出了團(tuán)隊(duì)管理能力的不足。加上2017年Facebook風(fēng)雨飄搖,在整體業(yè)務(wù)改革之后,業(yè)務(wù)線開(kāi)始向FAIR索取更多直接的、有助于提升業(yè)務(wù)質(zhì)量或者變現(xiàn)能力的技術(shù)——而這并非YannLeCun所愿與所長(zhǎng)。

始終保留著紐約大學(xué)教職的YannLeCun,在2018年1月宣布辭去了FAIR負(fù)責(zé)人的職務(wù),轉(zhuǎn)向幕后擔(dān)任首席科學(xué)家。而這也被外界解讀為一個(gè)信號(hào):似乎和吳恩達(dá)、李飛飛一樣,頂級(jí)科學(xué)家真的不那么容易在大企業(yè)高管的位置上長(zhǎng)治久安。

而在產(chǎn)業(yè)的探索之外,YannLeCun的另一個(gè)人設(shè),堪稱AI圈里的魯迅——路見(jiàn)不平一聲twitter,該罵你時(shí)候絕不休息。

不少人感覺(jué)YannLeCun有點(diǎn)過(guò)于“好作驚人語(yǔ)”,但其實(shí)要看到更大的背景在于,今天圍繞著深度學(xué)習(xí)到底是什么,未來(lái)會(huì)怎么發(fā)展,以及AI有沒(méi)有用等一系列問(wèn)題,滋生出了無(wú)盡的爭(zhēng)議。

而作為AI行內(nèi)最大的明星之一,YannLeCun似乎也在某種程度上有義務(wù)出來(lái)正本清源。

讓咱們回顧一下讓YannLeCun啟動(dòng)開(kāi)懟模式的三件事:

1、對(duì)著名的人形機(jī)器人,全球首位“機(jī)器公民“索菲亞。YannLeCun怒斥其為“徹頭徹尾的騙局”“完全是胡說(shuō)八道”。在YannLeCun看來(lái),所謂索菲亞不過(guò)是一具放錄音的模型而已,對(duì)它的“物體崇拜”會(huì)讓人們覺(jué)得AI就是在變戲法。真正的AI想要達(dá)到嬰兒甚至動(dòng)物的智商,還要走很遠(yuǎn)的路。

2、硅谷鋼鐵俠馬斯克,近兩年的愛(ài)好是到處說(shuō)AI就要?dú)缛祟惲?。YannLeCun認(rèn)為這種說(shuō)法非常不負(fù)責(zé)任。在他看來(lái),馬斯克就是跟一些樂(lè)觀派的科學(xué)家聊天,又回家看了一些想象成分居多的書(shū),然后就產(chǎn)生了《終結(jié)者》馬上要實(shí)現(xiàn)的想法。加上眾所周知馬斯克總想拯救人類,最后導(dǎo)致了我們聽(tīng)到的那些聲音。而在YannLeCun看來(lái),科學(xué)家是知道那種強(qiáng)AI不太可能在幾年內(nèi)實(shí)現(xiàn)的,馬斯克的言論是在散布恐慌。

3、去年,一位計(jì)算機(jī)視覺(jué)專家FilipPiekniewski連續(xù)發(fā)表了《深度學(xué)習(xí)已死》之類的“雄文”,高唱深度學(xué)習(xí)泡沫要破。YannLeCun則馬上開(kāi)啟了回懟模式,直言作者“非常無(wú)知”,指出這位作者首先沒(méi)有看到學(xué)術(shù)和產(chǎn)業(yè)界的現(xiàn)實(shí),其次用一些無(wú)關(guān)的證據(jù)強(qiáng)行證明AI“寒冬來(lái)了”的結(jié)論。比如作者提到AI藥丸,一大證據(jù)是AI科學(xué)家發(fā)twitter少了——?dú)獾腨annLeCun趕緊發(fā)了一堆twitter。

總結(jié)一下,會(huì)發(fā)現(xiàn)YannLeCun開(kāi)懟的主要是三種聲音:假AI、AI威脅論,AI寒冬論。

其實(shí)環(huán)顧左右,這三種論調(diào)是不是也飄散于我們身邊呢?

YoshuaBengio:

保衛(wèi)象牙塔,鎮(zhèn)守加拿大

說(shuō)了最高調(diào)的,再說(shuō)說(shuō)最低調(diào)的YoshuaBengio。

之所以說(shuō)他低調(diào),是因?yàn)閅oshuaBengio可說(shuō)是三巨頭中最不愿意探索產(chǎn)業(yè)世界的一位。他在必然出現(xiàn)的重金誘惑面前,也沒(méi)有加入那幾家我們耳熟能詳?shù)目萍季揞^,而是選擇繼續(xù)留在蒙特利爾大學(xué)的象牙塔里,享受著加拿大的好山好水。

然而隨著自己發(fā)明的深度學(xué)習(xí)越來(lái)越火,YoshuaBengio發(fā)現(xiàn)事情并不簡(jiǎn)單??萍季揞^和投資人開(kāi)始瘋狂向?qū)W校搶人。深度學(xué)習(xí)方向的博士變成了炙手可熱的香餑餑,直到Y(jié)oshuaBengio發(fā)現(xiàn),他還沒(méi)畢業(yè)的博士都已經(jīng)被饑渴的科技公司瓜分干凈。這位科學(xué)家決心要保衛(wèi)象牙塔的純凈。

他的辦法是,自己開(kāi)一家公司……

咳咳,事實(shí)上,YoshuaBengio是在幾位合伙人的勸說(shuō)下,決定共同建立一個(gè)新型的產(chǎn)學(xué)一體化機(jī)構(gòu)。我們知道AI界有著名的OpenAI,專注無(wú)不商業(yè)目標(biāo)的開(kāi)源項(xiàng)目,讓科學(xué)家能在企業(yè)完成自己的夢(mèng)想。

而YoshuaBengio與合伙人聯(lián)合創(chuàng)立的ElementAI,則反其道而行之。它致力于讓AI科學(xué)家們可以直接參與商業(yè)項(xiàng)目,獲取相關(guān)回報(bào),但同時(shí)能夠保留教職——比如每周只用抽出幾個(gè)小時(shí)來(lái)來(lái)ElementAI干活,大家一起做做項(xiàng)目賺賺外快就行了。

這種有點(diǎn)像AI科學(xué)家在線兼職的模式,可以有效解決一個(gè)問(wèn)題:創(chuàng)業(yè)企業(yè)和傳統(tǒng)企業(yè),根本無(wú)力與科技巨頭爭(zhēng)搶AI人才,但他們卻實(shí)打?qū)嵉匦枰狝I人才來(lái)幫忙。這樣一種模式可謂兩全其美。

很快,ElementAI就獲得了微軟的投資,現(xiàn)在在深入各行業(yè)定制AI解決方案之外,也開(kāi)始與大公司的聯(lián)合科研,以及對(duì)優(yōu)質(zhì)AI項(xiàng)目進(jìn)行投資和技術(shù)幫助。而對(duì)于客戶來(lái)說(shuō),YoshuaBengio本人就是商業(yè)合作上的金字招牌。

YoshuaBengio的另一個(gè)工作重心,是學(xué)校里的蒙特利爾學(xué)習(xí)算法研究所(MILA)。MILA和ElementAI一學(xué)一產(chǎn),構(gòu)成了蒙特利爾AI產(chǎn)業(yè)的雙核驅(qū)動(dòng)。今天,加拿大AI的快速發(fā)展,以及蒙特利爾被稱為AI時(shí)代的硅谷,都與YoshuaBengio的工作緊密相關(guān)。

嗯,至少目前來(lái)看,這位象牙塔守護(hù)者,加拿大AI之星,還是比較好地完成了任務(wù)。

YoshuaBengio還有一項(xiàng)比較出名的行動(dòng),是在AI社會(huì)責(zé)任與公益領(lǐng)域廣泛擔(dān)當(dāng)呼吁者。比如他帶頭反對(duì)谷歌的軍方項(xiàng)目,呼吁終止AI武器化。并且積極推動(dòng)關(guān)注AI中的歧視與不公平問(wèn)題。

假如給YoshuaBengio近年來(lái)的工作打上三個(gè)標(biāo)簽,那就是:學(xué)術(shù)的,公益的,加拿大的……

GeoffreyHinton:懷疑者,依舊懷疑

與兩位50多歲的學(xué)生相比,已經(jīng)72歲的老師Hinton,似乎應(yīng)該閑下來(lái),享受“AI教父“的尊名,指導(dǎo)指導(dǎo)學(xué)生,籌劃一下傳記。

然而事實(shí)并非如此,GeoffreyHinton今天依舊在保持高強(qiáng)度的工作。被腰間盤(pán)疾病困擾的他,甚至必須要站著完成所有研究。與兩位學(xué)生和大部分功成名就的同行相比,Hinton更像是工作在AI一線的那一個(gè)。

簡(jiǎn)單來(lái)說(shuō),那個(gè)又倔又橫的小伙子,如今變成了個(gè)又倔又橫的老頭。

曾經(jīng)在一次采訪中,GeoffreyHinton被問(wèn)到為什么能在幾十年的不被重視中堅(jiān)持下來(lái),他的回答非??嵋卜浅inton。他說(shuō):

“他們都錯(cuò)了?!?/p>

直到今天,Hinton還是認(rèn)為有可能所有人都錯(cuò)了,包括他自己。

1986年,Hinton發(fā)表了《Learningrepresentationsbyback-propagationerrors》,這是Hinton一生的代表作之一,標(biāo)志著反向傳播算法被引進(jìn)深度學(xué)習(xí),今天來(lái)看有著跨時(shí)代的意義。

然而Hinton在近兩年卻頻頻表示,反向傳播有可能存在這巨大的缺陷。他不但自己嘗試了多種方式突破它,還將大量相關(guān)研究綜合起來(lái),寫(xiě)論文對(duì)比如何擺脫反向傳播的窠臼——直到現(xiàn)在,他還沒(méi)有超越自己,但并不代表以后不能。

GeoffreyHinton是一個(gè)徹頭徹尾的懷疑者,這點(diǎn)并沒(méi)有因?yàn)樗兂伞疤┒贰倍淖儭?/p>

在產(chǎn)業(yè)世界,Hinton的主要工作在谷歌大腦。近兩年,TensorFlow的簡(jiǎn)化升級(jí),谷歌大腦的AI能力拓展,背后都有Hinton與團(tuán)隊(duì)的身影。

而作為“教父”一樣的存在,Hinton更被人關(guān)注的是在AI學(xué)術(shù)領(lǐng)域不斷提出的顛覆性觀點(diǎn)。恰好這又是一個(gè)樂(lè)于顛覆自己和其他人工作的人。

2017年年底,Hinton發(fā)表了名為膠囊網(wǎng)絡(luò)CapsuleNetworks的方案,被廣泛認(rèn)為將改寫(xiě)深度學(xué)習(xí)的發(fā)展軌跡。

膠囊網(wǎng)絡(luò)所針對(duì)的,是卷積神經(jīng)網(wǎng)絡(luò)的操作模式。傳統(tǒng)的深度學(xué)習(xí)算法中,每一層神經(jīng)網(wǎng)絡(luò)必須做同樣的卷積運(yùn)算。而膠囊網(wǎng)絡(luò)則認(rèn)為,不同的神經(jīng)元可以攜帶不同屬性,這就像人腦中的不同區(qū)域負(fù)責(zé)不同的工作。

這種將深度學(xué)習(xí)進(jìn)行稀疏激活的顛覆式方案,目前已經(jīng)被證明可以在圖像識(shí)別領(lǐng)域達(dá)成創(chuàng)新。不少人相信,膠囊網(wǎng)絡(luò)未來(lái)會(huì)成為AI可解釋、AI被賦予常識(shí)的關(guān)鍵技術(shù)。

近幾年,Hinton帶來(lái)的另一個(gè)顛覆,是在暗知識(shí)提取darkknowledgeextraction領(lǐng)域不間斷的工作。一般來(lái)說(shuō),深度學(xué)習(xí)獲取抽象特征,是建立在龐大的數(shù)據(jù)運(yùn)算基礎(chǔ)上的。而這會(huì)導(dǎo)致AI必須消耗大量的數(shù)據(jù)和算力來(lái)反復(fù)完成訓(xùn)練。而暗知識(shí)提取,或者叫知識(shí)蒸餾,則致力于讓智能體之間可以提取隱藏的知識(shí),把一部分知識(shí)留存到子深度學(xué)習(xí)系統(tǒng),最終達(dá)成智能體擺脫龐大的算力與數(shù)據(jù)渴求,觸及相對(duì)先天的“智能”。

可以看到,Hinton在今天依舊那么硬核。很多在AI世界看似常識(shí)的東西,AI之父卻壓根不相信它,并且在反復(fù)挑戰(zhàn)。

AI走到頭了嗎?深度學(xué)習(xí)是最終解法嗎?這老頭一輩子從來(lái)沒(méi)相信過(guò)大多數(shù)人的判斷。

三巨頭的今天:深度學(xué)習(xí),從1到很多

假如說(shuō),三巨頭高舉火把,四下無(wú)人的那些年,是深度學(xué)習(xí)從0到1的時(shí)代。

那么今天全世界的深度學(xué)習(xí)熱,毫無(wú)疑問(wèn)標(biāo)志著深度學(xué)習(xí)開(kāi)始從1到N。然而從三巨頭今天的工作來(lái)看,它也僅僅才到1而已。

不知道大家注意到?jīng)]有,三巨頭今天主要關(guān)注的方向,恰恰對(duì)應(yīng)著以深度學(xué)習(xí)為代表的這一次AI復(fù)興,所攜帶的先天不足,以及后天激發(fā)的問(wèn)題。把三巨頭的工作強(qiáng)行合并,可以看到這樣幾個(gè)方向:

1、AI到底是空談還是事實(shí)?解決這個(gè)問(wèn)題,必須把深度學(xué)習(xí)扔到產(chǎn)業(yè)熔爐當(dāng)中,在算力、數(shù)據(jù)和應(yīng)用場(chǎng)景里,檢驗(yàn)深度學(xué)習(xí)到底能干什么。而這也是大量AI科學(xué)家必須去企業(yè)的邏輯之一。

2、AI火了之后,各種亂七八糟的事情一定會(huì)出來(lái)飛舞,需要有人把火車?yán)剀壍?。YannLeCun在社交媒體上四面開(kāi)火就是因?yàn)檫@個(gè)。索菲亞的把戲、馬斯克的AI威脅論,以及“AI寒冬又來(lái)了”,這幾個(gè)說(shuō)法今天在中國(guó)一定有大批擁護(hù)者。不難看出問(wèn)題還是挺尖銳的。

3、AI的人才匹配與平衡問(wèn)題。這輪AI復(fù)興的一個(gè)特征,是高度的產(chǎn)學(xué)一體化,導(dǎo)致學(xué)術(shù)人才可以直接與應(yīng)用打通。然而學(xué)術(shù)人才如何在產(chǎn)業(yè)誘惑面前保持學(xué)術(shù)追求,產(chǎn)業(yè)如何在巨頭爭(zhēng)搶下獲得AI人才幫助,這個(gè)問(wèn)題在中國(guó)同樣存在。

4、深度學(xué)習(xí)是把雙刃劍,軍事化、歧視與不公、因素安全等問(wèn)題隨之產(chǎn)生。AI的社會(huì)責(zé)任,是一個(gè)刻不容緩的矛盾。

5、深度學(xué)習(xí),不是終點(diǎn)。反向傳播,多層神經(jīng)網(wǎng)絡(luò)等等技術(shù)模式構(gòu)成了我們習(xí)以為常的那個(gè)“AI”。但是深度學(xué)習(xí)依舊有大量問(wèn)題存在,比如黑箱性,遷移能力差,高消耗等等。我們是把今天的AI當(dāng)成原教旨,還是繼續(xù)挑戰(zhàn),尋找更上層的終點(diǎn)?這點(diǎn)Hinton這位“深度學(xué)習(xí)之父”真是帶了個(gè)好頭。

功績(jī)當(dāng)然偉大,問(wèn)題還有一堆。今天,三巨頭還在工作,他們?cè)跒樗麄兊脑煳镓?fù)責(zé)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    91

    文章

    39126

    瀏覽量

    299783
  • Facebook
    +關(guān)注

    關(guān)注

    3

    文章

    1432

    瀏覽量

    58573
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5594

    瀏覽量

    124161

原文標(biāo)題:昨日種種已得獎(jiǎng),那深度學(xué)習(xí)三巨頭今天在忙什么?

文章出處:【微信號(hào):AI_shequ,微信公眾號(hào):人工智能愛(ài)好者社區(qū)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    機(jī)器學(xué)習(xí)深度學(xué)習(xí)中需避免的 7 個(gè)常見(jiàn)錯(cuò)誤與局限性

    ,并驗(yàn)證輸出結(jié)果,就能不斷提升專業(yè)技能,養(yǎng)成優(yōu)秀數(shù)據(jù)科學(xué)家的工作習(xí)慣。需避免的機(jī)器學(xué)習(xí)深度學(xué)習(xí)數(shù)據(jù)錯(cuò)誤訓(xùn)練數(shù)據(jù)驅(qū)動(dòng)的人工智能模型時(shí),我們會(huì)遇到一些常見(jiàn)錯(cuò)誤和局
    的頭像 發(fā)表于 01-07 15:37 ?112次閱讀
    機(jī)器<b class='flag-5'>學(xué)習(xí)</b>和<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>中需避免的 7 個(gè)常見(jiàn)錯(cuò)誤與局限性

    穿孔機(jī)頂頭檢測(cè)儀 機(jī)器視覺(jué)深度學(xué)習(xí)

    ,能適用惡劣工況,粉塵、高溫、氧化皮等惡劣環(huán)境中均可正常工作。 測(cè)量原理 利用頂頭與周圍的物質(zhì)(水、空氣、導(dǎo)盤(pán)等)紅外輻射能量的差異,用熱成像相機(jī)拍攝出清晰的圖片,再通過(guò)深度學(xué)習(xí)短時(shí)間內(nèi)深度
    發(fā)表于 12-22 14:33

    如何深度學(xué)習(xí)機(jī)器視覺(jué)的應(yīng)用場(chǎng)景

    深度學(xué)習(xí)視覺(jué)應(yīng)用場(chǎng)景大全 工業(yè)制造領(lǐng)域 復(fù)雜缺陷檢測(cè):處理傳統(tǒng)算法難以描述的非標(biāo)準(zhǔn)化缺陷模式 非標(biāo)產(chǎn)品分類:對(duì)形狀、顏色、紋理多變的產(chǎn)品進(jìn)行智能分類 外觀質(zhì)量評(píng)估:基于學(xué)習(xí)的外觀質(zhì)量標(biāo)準(zhǔn)判定 精密
    的頭像 發(fā)表于 11-27 10:19 ?168次閱讀

    如何在機(jī)器視覺(jué)中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    圖 1:基于深度學(xué)習(xí)的目標(biāo)檢測(cè)可定位已訓(xùn)練的目標(biāo)類別,并通過(guò)矩形框(邊界框)對(duì)其進(jìn)行標(biāo)識(shí)。 討論人工智能(AI)或深度學(xué)習(xí)時(shí),經(jīng)常會(huì)出現(xiàn)“
    的頭像 發(fā)表于 09-10 17:38 ?812次閱讀
    如何在機(jī)器視覺(jué)中部署<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    深度學(xué)習(xí)對(duì)工業(yè)物聯(lián)網(wǎng)有哪些幫助

    、實(shí)施路徑個(gè)維度展開(kāi)分析: 一、深度學(xué)習(xí)如何突破工業(yè)物聯(lián)網(wǎng)的技術(shù)瓶頸? 1. 非結(jié)構(gòu)化數(shù)據(jù)處理:解鎖“沉睡數(shù)據(jù)”價(jià)值 傳統(tǒng)困境 :工業(yè)物聯(lián)網(wǎng)中70%以上的數(shù)據(jù)為非結(jié)構(gòu)化數(shù)據(jù)(如設(shè)備振動(dòng)波形、紅外圖像、日志文本),傳統(tǒng)方法難以
    的頭像 發(fā)表于 08-20 14:56 ?909次閱讀

    自動(dòng)駕駛中Transformer大模型會(huì)取代深度學(xué)習(xí)嗎?

    持續(xù)討論。特別是自動(dòng)駕駛領(lǐng)域,部分廠商開(kāi)始嘗試將多模態(tài)大模型(MLLM)引入到感知、規(guī)劃與決策系統(tǒng),引發(fā)了“傳統(tǒng)深度學(xué)習(xí)是否已過(guò)時(shí)”的激烈爭(zhēng)論。然而,從技術(shù)原理、算力成本、安全需求與實(shí)際落地路徑等維度來(lái)看,Transforme
    的頭像 發(fā)表于 08-13 09:15 ?4044次閱讀
    自動(dòng)駕駛中Transformer大模型會(huì)取代<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>嗎?

    當(dāng)深度學(xué)習(xí)遇上嵌入式資源困境,特征空間如何破局?

    近年來(lái),隨著人工智能(AI)技術(shù)的迅猛發(fā)展,深度學(xué)習(xí)(Deep Learning)成為最熱門(mén)的研究領(lǐng)域之一。語(yǔ)音識(shí)別、圖像識(shí)別、自然語(yǔ)言處理等領(lǐng)域,深度
    發(fā)表于 07-14 14:50 ?1166次閱讀
    當(dāng)<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>遇上嵌入式資源困境,特征空間如何破局?

    中天光伏材料有限公司選購(gòu)我司HS-TH-3500炭黑含量測(cè)試儀

    中天光伏材料有限公司自2012年6月28日成立以來(lái),光伏材料領(lǐng)域成績(jī)斐然。公司經(jīng)營(yíng)范圍廣泛,涵蓋功能膜、光學(xué)薄膜、太陽(yáng)能電池背板等產(chǎn)品的研發(fā)、生產(chǎn)與銷售。在其產(chǎn)品生產(chǎn)過(guò)程中,材料質(zhì)量把控至關(guān)重要
    的頭像 發(fā)表于 07-04 09:16 ?684次閱讀
    <b class='flag-5'>中天</b>光伏材料有限公司選購(gòu)我司HS-TH-3500炭黑含量測(cè)試儀

    大家電巨頭機(jī)器人領(lǐng)域的布局情況

    隨著美的集團(tuán)、海爾智家、格力電器的2024年年度報(bào)告相繼披露,家電巨頭2024年“國(guó)殺”已見(jiàn)分曉。
    的頭像 發(fā)表于 05-12 10:49 ?2326次閱讀
    <b class='flag-5'>三</b>大家電<b class='flag-5'>巨頭</b><b class='flag-5'>在</b>機(jī)器人領(lǐng)域的布局情況

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過(guò)程中使用合適的特征變換對(duì)深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)機(jī)器學(xué)習(xí),網(wǎng)絡(luò)的每個(gè)層都將對(duì)輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習(xí)的框架,可以深度理解數(shù)據(jù)中所要表示的規(guī)律。從原理上看,使用
    的頭像 發(fā)表于 04-02 18:21 ?1417次閱讀

    OpenVINO?工具套件的深度學(xué)習(xí)工作臺(tái)中無(wú)法導(dǎo)出INT8模型怎么解決?

    無(wú)法 OpenVINO? 工具套件的深度學(xué)習(xí) (DL) 工作臺(tái)中導(dǎo)出 INT8 模型
    發(fā)表于 03-06 07:54

    如何排除深度學(xué)習(xí)工作臺(tái)上量化OpenVINO?的特定層?

    無(wú)法確定如何排除要在深度學(xué)習(xí)工作臺(tái)上量化OpenVINO?特定層
    發(fā)表于 03-06 07:31

    SLAMTEC Aurora:把深度學(xué)習(xí)“卷”進(jìn)機(jī)器人日常

    人工智能和機(jī)器人技術(shù)飛速發(fā)展的今天,深度學(xué)習(xí)與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能機(jī)器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡(jiǎn)直殺瘋了!靠著逆天的深度
    的頭像 發(fā)表于 02-19 15:49 ?819次閱讀

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    ,并廣泛介紹了深度學(xué)習(xí)兩個(gè)主要軍事應(yīng)用領(lǐng)域的應(yīng)用:情報(bào)行動(dòng)和自主平臺(tái)。最后,討論了相關(guān)的威脅、機(jī)遇、技術(shù)和實(shí)際困難。主要發(fā)現(xiàn)是,人工智能技術(shù)并非無(wú)所不能,需要謹(jǐn)慎應(yīng)用,同時(shí)考慮到其局限性、網(wǎng)絡(luò)安全威脅以及
    的頭像 發(fā)表于 02-14 11:15 ?913次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network
    的頭像 發(fā)表于 02-12 15:15 ?1612次閱讀