chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

有意義的機(jī)器學(xué)習(xí)來自于不同的數(shù)據(jù)

5RJg_mcuworld ? 來源:YXQ ? 2019-04-22 15:35 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

人工智能的三大發(fā)展要素已經(jīng)是老生常談了。算法、算力和數(shù)據(jù)對(duì)機(jī)器學(xué)習(xí)的重要性和聲望不亞于“謙哥”的喝酒、燙頭和抽煙。

那些熱衷競爭實(shí)施機(jī)器學(xué)習(xí)的公司現(xiàn)在驚訝地發(fā)現(xiàn),其實(shí),實(shí)施一些算法使機(jī)器變得對(duì)某一數(shù)據(jù)或問題更加智能并不困難。畢竟,這年頭“即插即用”又很穩(wěn)健的算法編程解決方案簡直“爛大街了”。例如,從開源機(jī)器學(xué)習(xí)框架谷歌TensorFlow,到微軟Azure Machine Learning以及亞馬遜SageMaker,應(yīng)有盡有。

所以,數(shù)據(jù)已逐漸成為了機(jī)器學(xué)習(xí)競爭中最關(guān)鍵的區(qū)分點(diǎn)。一個(gè)原因是高質(zhì)量數(shù)據(jù)并不常見;另一原因是數(shù)據(jù)尚未商品化,公司企業(yè)之間存在著信息不對(duì)稱。

希望借助AI一臂之力的企業(yè)需要尋求外部數(shù)據(jù)源,甚至這樣的數(shù)據(jù)甚至可能需要他們自己創(chuàng)建。

有用的數(shù)據(jù):有價(jià)值、又很稀少

數(shù)據(jù)逐漸變成競爭中的區(qū)分點(diǎn)是因?yàn)樵S多公司根本沒有他們需要的數(shù)據(jù)。盡管幾十年來,公司都在使用通用的會(huì)計(jì)準(zhǔn)則這樣的系統(tǒng)化方法來評(píng)估自己,但是這種評(píng)估方法一直關(guān)注于實(shí)體資產(chǎn)與金融資產(chǎn),也就是實(shí)物和錢。2013年甚至給資產(chǎn)定價(jià)理論頒了一個(gè)諾貝爾獎(jiǎng),強(qiáng)化了已有的對(duì)實(shí)體或金融資產(chǎn)重要性的認(rèn)知。

但是,今天最有價(jià)值的那些公司貿(mào)易對(duì)象是軟件或網(wǎng)絡(luò),而不僅僅是實(shí)體或金融資產(chǎn)。在過去的40年內(nèi),資產(chǎn)類型的重心有了很大的變化:1975年,83%的有形資產(chǎn)占整個(gè)市場絕大部分份額;而2015年時(shí)市場中84%的資產(chǎn)是無形資產(chǎn)。今天的公司巨頭們不再生產(chǎn)咖啡壺也不再售賣洗衣機(jī),他們轉(zhuǎn)而提供應(yīng)用程序,軟件等等。這樣的轉(zhuǎn)變?cè)斐闪藭?huì)計(jì)記賬的對(duì)象和實(shí)際產(chǎn)生價(jià)值的對(duì)象極其不匹配。

結(jié)果就是有用數(shù)據(jù)的缺少已經(jīng)成為了一個(gè)問題。市面價(jià)值與賬面價(jià)值的差別越來越大。公司們正在試圖利用機(jī)器學(xué)習(xí)輔助重要的商業(yè)決策來改善這一差別。有時(shí),機(jī)器學(xué)習(xí)甚至?xí)〈恍┌嘿F的咨詢顧問們,而最后他們經(jīng)常會(huì)意識(shí)到算法所需的數(shù)據(jù)壓根不存在。所以實(shí)際上,那些閃瞎人眼的先進(jìn)AI系統(tǒng)最后依舊只是在同樣老舊的數(shù)據(jù)上試圖實(shí)施新技術(shù)。

和人類一樣,除非有人教,機(jī)器學(xué)習(xí)系統(tǒng)并不會(huì)精通任何領(lǐng)域。不過比起人類,機(jī)器會(huì)需要更多的信息來進(jìn)行學(xué)習(xí),并且它們確實(shí)比人類讀取數(shù)據(jù)的速度更快。因此,表面上公司間會(huì)互相競爭誰擁有更好的機(jī)器學(xué)習(xí)程序員以及誰先啟動(dòng)AI項(xiàng)目,在幕后其實(shí)是對(duì)于數(shù)據(jù)新穎度和廣泛度的競爭。

比如說在金融領(lǐng)域,可供選擇的數(shù)據(jù)來源遠(yuǎn)遠(yuǎn)超過了傳統(tǒng)證券交易報(bào)告以及投資者展示等。數(shù)據(jù)還可以來源于社交網(wǎng)絡(luò)情感分析或者獲批專利數(shù)量等。

這些數(shù)據(jù)源的重要性主要基于兩點(diǎn)原因。首先,傳統(tǒng)數(shù)據(jù)局限于傳統(tǒng)資產(chǎn),在當(dāng)今無形資產(chǎn)當(dāng)?shù)赖臅r(shí)代,覆蓋面上遠(yuǎn)遠(yuǎn)不夠。第二,并沒有任何必要在市場上所有人都在分析的數(shù)據(jù)上使用機(jī)器學(xué)習(xí)方法。所有對(duì)此感興趣的人都早已經(jīng)嘗試過分析產(chǎn)業(yè)趨勢、利潤率、增長率、息稅前利潤、資產(chǎn)周轉(zhuǎn)率以及資產(chǎn)回報(bào)率和其它上千個(gè)常見的變量與股東回報(bào)率之間的相關(guān)性。

在所有人都在分析的數(shù)據(jù)上試圖發(fā)現(xiàn)相關(guān)性并不會(huì)幫助公司取勝。相反,希望使用AI取勝的公司需要尋找新數(shù)據(jù)集之間的聯(lián)系,因此他們可能必須自己創(chuàng)建那些新數(shù)據(jù)集來評(píng)估無形資產(chǎn)。

謹(jǐn)慎思考:你想知道什么?

創(chuàng)建數(shù)據(jù)比僅僅把銷售點(diǎn)與顧客信息兩個(gè)表聚合到一起然后丟進(jìn)數(shù)據(jù)庫復(fù)雜得多。大多數(shù)企業(yè)錯(cuò)誤地相信通過這樣一種權(quán)宜的方法能夠預(yù)測或區(qū)分出他們關(guān)心的信息:把所有能找到的數(shù)據(jù)都大費(fèi)周章地聚合到一起然后指望能夠找到一絲希望之光。

盡管機(jī)器學(xué)習(xí)有時(shí)會(huì)突然發(fā)現(xiàn)某些從未有人意識(shí)到的事物從而使所有人都大吃一驚,但它并不能夠持續(xù)穩(wěn)定提供這樣的洞察。這并不意味著這項(xiàng)工具很垃圾,這意味著我們需要更明智地使用它。但說起來容易做起來難:比如,在我們研究外部數(shù)據(jù)市場時(shí),我們發(fā)現(xiàn)大多數(shù)新數(shù)據(jù)提供者依舊在關(guān)注實(shí)體與金融資產(chǎn)。

許多企業(yè)遺漏的一步是提出一項(xiàng)真正重要的假設(shè)。機(jī)器學(xué)習(xí)真正體現(xiàn)優(yōu)越性之處在于,它們能夠通過采用人類已經(jīng)擁有的見解,這可以來自于經(jīng)驗(yàn)法則、廣泛認(rèn)知或者幾乎完全不被理解的相關(guān)性,來建設(shè)一種速度更快、更易于理解、更易于擴(kuò)展且更低錯(cuò)誤率的方法。

為了這樣使用機(jī)器學(xué)習(xí)方法,不應(yīng)向系統(tǒng)塞進(jìn)任何你能找到的數(shù)據(jù)。你僅僅輸入被謹(jǐn)慎思考過的一組信息,希望它能夠?qū)W習(xí)并拓展,得到比人類掌握的更多的信息。

有意義的機(jī)器學(xué)習(xí)來自于不同的數(shù)據(jù)

以下是為希望搭建有影響力、有價(jià)值的機(jī)器學(xué)習(xí)應(yīng)用的公司提出的三點(diǎn)建議:

1.成功的AI在于與眾不同的數(shù)據(jù)。在你的競爭對(duì)手都已經(jīng)掌握的數(shù)據(jù)上你是得不出什么新穎信息的。審視企業(yè)內(nèi)部,找出只有你們知道并理解的信息并以此創(chuàng)建一個(gè)獨(dú)特的數(shù)據(jù)集。機(jī)器學(xué)習(xí)算法確實(shí)需要大量的數(shù)據(jù)支持,但這并不意味著模型需要考慮大量變量。你應(yīng)當(dāng)把關(guān)注點(diǎn)放在企業(yè)已經(jīng)具有獨(dú)特之處的數(shù)據(jù)上。

2.有意義的數(shù)據(jù)比全面的數(shù)據(jù)好。你可能就某問題上擁有大量詳盡數(shù)據(jù),但它們可能壓根沒什么用。如果你的公司根本不會(huì)在決策過程中隨時(shí)使用這些信息,那這樣的數(shù)據(jù)八成對(duì)機(jī)器學(xué)習(xí)也沒有什么價(jià)值。專業(yè)的機(jī)器學(xué)習(xí)工程師會(huì)詢問許多困難的問題來找出什么才是真正重要的領(lǐng)域,以及那些領(lǐng)域?qū)⑷绾螌?duì)該應(yīng)用程序輸出結(jié)果產(chǎn)生影響。如果這些問題對(duì)你太難了,那么你并沒有為得到實(shí)際價(jià)值而仔細(xì)思考。

3.應(yīng)當(dāng)從你已知的信息出發(fā)。最善于利用機(jī)器學(xué)習(xí)的公司會(huì)從一個(gè)獨(dú)特的視角出發(fā),來找到與他們重要決策最為相關(guān)的因素。這將會(huì)指導(dǎo)他們?nèi)ナ占畏N數(shù)據(jù)以及使用何種技術(shù)。就基于你們團(tuán)隊(duì)已經(jīng)擁有的一部分知識(shí)之上進(jìn)行拓展這個(gè)問題來著手是比較簡單的,這也將為你企業(yè)創(chuàng)造更多價(jià)值。

很明顯這個(gè)時(shí)代已經(jīng)是“軟件吃掉了整個(gè)世界”了(這個(gè)形容來源于軟件工程師Marc Andreessen)。但它們依然很饑餓!軟件們需要一份包含嶄新數(shù)據(jù)與科技的食譜來持續(xù)創(chuàng)造價(jià)值。

沒有人希望落后于這樣的洞察、機(jī)器與外部數(shù)據(jù)的轉(zhuǎn)變。那么,請(qǐng)從內(nèi)部審視企業(yè)開始,去發(fā)掘你獨(dú)特的見解以及你可以而且應(yīng)該得到的有價(jià)值的外部數(shù)據(jù)來源。通過這些步驟,你才能夠發(fā)現(xiàn)保持企業(yè)競爭力的相關(guān)洞見。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:機(jī)器學(xué)習(xí)競爭其實(shí)是一場數(shù)據(jù)上的競爭

文章出處:【微信號(hào):mcuworld,微信公眾號(hào):嵌入式資訊精選】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    機(jī)器視覺缺陷檢測中傳感器集成的五大關(guān)鍵

    質(zhì)量控制是制造流程中至關(guān)重要但往往效率低下的環(huán)節(jié)。機(jī)器視覺能夠自動(dòng)化部分或全部缺陷檢測任務(wù),但僅靠技術(shù)本身無法帶來顯著改進(jìn)。必須理解并優(yōu)化整個(gè)機(jī)器視覺檢測流程,這項(xiàng)技術(shù)才能產(chǎn)生有意義的結(jié)果。與人
    的頭像 發(fā)表于 11-03 11:40 ?594次閱讀
    <b class='flag-5'>機(jī)器</b>視覺缺陷檢測中傳感器集成的五大關(guān)鍵

    Linux歷史上10件最有意義的大事,你知道幾件?

    個(gè)傳奇。 今天,我們就帶你回顧? Linux 發(fā)展史上最有意義的十件大事 ,看看它如何一步步改變了世界。 一、1991:Linus Torvalds發(fā)布第一版Linux內(nèi)核 1991 年 8 月,芬蘭
    的頭像 發(fā)表于 10-20 11:10 ?229次閱讀

    FPGA在機(jī)器學(xué)習(xí)中的具體應(yīng)用

    隨著機(jī)器學(xué)習(xí)和人工智能技術(shù)的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無法滿足高效處理大規(guī)模數(shù)據(jù)和復(fù)雜模型的需求。FPGA(現(xiàn)場可編程門陣列)作為一種靈活且高效的硬件加速平臺(tái)
    的頭像 發(fā)表于 07-16 15:34 ?2640次閱讀

    **【技術(shù)干貨】Nordic nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)的完美結(jié)合**

    【技術(shù)干貨】nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)的完美結(jié)合 近期收到不少伙伴咨詢nRF54系列芯片的應(yīng)用與技術(shù)細(xì)節(jié),今天我們整理幾個(gè)核心問題與解答,帶你快速掌握如何在nRF54上部署AI
    發(fā)表于 04-01 00:00

    工業(yè)機(jī)器人工作站的建設(shè)意義

    其他輔助設(shè)備的配合,形成了一套完整的自動(dòng)化生產(chǎn)流程。桐爾作為專業(yè)的自動(dòng)化解決方案提供商,致力通過工業(yè)機(jī)器人工作站的建設(shè),為企業(yè)帶來顯著的經(jīng)濟(jì)效益和生產(chǎn)效率提升。 工業(yè)機(jī)器人工作站的建立首先能夠顯著
    發(fā)表于 03-17 14:49

    labview數(shù)據(jù)類型與PLC 數(shù)據(jù)類型之間的轉(zhuǎn)換(來自于寫入浮點(diǎn)數(shù)到匯川 PLC中的數(shù)據(jù)轉(zhuǎn)換關(guān)鍵的修改)

    本帖最后由 ironflag 2025-6-26 21:09 編輯 Labview通過Modbus庫函數(shù),寫入浮點(diǎn)數(shù)到匯川PLC,正常操作如下: 1、將labview浮點(diǎn)數(shù),強(qiáng)制轉(zhuǎn)換
    發(fā)表于 02-24 19:01

    機(jī)器學(xué)習(xí)模型市場前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)模型市場
    的頭像 發(fā)表于 02-13 09:39 ?627次閱讀

    ADS1015輸入懸空時(shí),采集到電壓是怎么回事?

    這個(gè)0.3V左右的電壓可能是ADS1015的ESD二極管壓降,不會(huì)的, 因?yàn)檫@對(duì)二極管是反向的. 這個(gè)電壓純粹是干擾,感應(yīng)和漏電流等因素引起的. 這種測量沒有意義
    發(fā)表于 01-14 08:35

    CMOS 相機(jī)中的讀出噪聲:只有有效值才有意義

    對(duì)于任何統(tǒng)計(jì)參數(shù),都有多種模型可應(yīng)用于數(shù)據(jù)。計(jì)算讀出噪聲的經(jīng)典電氣工程方法是定義均方根 (rms)。這一直是計(jì)算 CCD 讀出噪聲的方法。中值和均方根都是完全有效的統(tǒng)計(jì)模型,但只有均方根噪聲才能準(zhǔn)確
    的頭像 發(fā)表于 12-31 06:26 ?1911次閱讀
    CMOS 相機(jī)中的讀出噪聲:只有有效值才<b class='flag-5'>有意義</b>

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個(gè)強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度學(xué)習(xí)相比
    的頭像 發(fā)表于 12-30 09:16 ?1984次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    如何選擇云原生機(jī)器學(xué)習(xí)平臺(tái)

    當(dāng)今,云原生機(jī)器學(xué)習(xí)平臺(tái)因其彈性擴(kuò)展、高效部署、低成本運(yùn)營等優(yōu)勢,逐漸成為企業(yè)構(gòu)建和部署機(jī)器學(xué)習(xí)應(yīng)用的首選。然而,市場上的云原生機(jī)器
    的頭像 發(fā)表于 12-25 11:54 ?704次閱讀

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】+數(shù)據(jù)在具身人工智能中的價(jià)值

    出現(xiàn)重大問題。此外,機(jī)器人在不同環(huán)境中適應(yīng)和泛化的能力取決它處理的數(shù)據(jù)的多樣性。例如,家庭服務(wù)機(jī)器人必須適應(yīng)各種家庭環(huán)境和任務(wù),要求它們從廣泛的家庭環(huán)境
    發(fā)表于 12-24 00:33

    zeta在機(jī)器學(xué)習(xí)中的應(yīng)用 zeta的優(yōu)缺點(diǎn)分析

    的應(yīng)用(基于低功耗廣域物聯(lián)網(wǎng)技術(shù)ZETA) ZETA作為一種低功耗廣域物聯(lián)網(wǎng)(LPWAN)技術(shù),雖然其直接應(yīng)用于機(jī)器學(xué)習(xí)的場景可能并不常見,但它可以通過提供高效、穩(wěn)定的物聯(lián)網(wǎng)通信支持,間接促進(jìn)機(jī)器
    的頭像 發(fā)表于 12-20 09:11 ?1631次閱讀

    cmp在機(jī)器學(xué)習(xí)中的作用 如何使用cmp進(jìn)行數(shù)據(jù)對(duì)比

    機(jī)器學(xué)習(xí)領(lǐng)域,"cmp"這個(gè)術(shù)語可能并不是一個(gè)常見的術(shù)語,它可能是指"比較"(comparison)的縮寫。 比較在機(jī)器學(xué)習(xí)中的作用 模型評(píng)估 :比較不同模型的性能是
    的頭像 發(fā)表于 12-17 09:35 ?1331次閱讀

    安防監(jiān)控NTP校時(shí)服務(wù)器:讓視頻數(shù)據(jù)有意義

    安防監(jiān)控NTP校時(shí)服務(wù)器:讓視頻數(shù)據(jù)有意義
    的頭像 發(fā)表于 12-16 10:59 ?879次閱讀
    安防監(jiān)控NTP校時(shí)服務(wù)器:讓視頻<b class='flag-5'>數(shù)據(jù)</b>更<b class='flag-5'>有意義</b>