chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

ml8z_IV_Technol ? 來源:ZF ? 2019-04-29 16:44 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

如何基于深度神經網絡設計一個端到端的自動駕駛模型?如何設計一個基于增強學習的自動駕駛決策系統(tǒng)?簡述算法設計思路。

【問題1】

如何基于深度神經網絡

設計一個端到端的自動駕駛模型?

分析與解答

本題屬于開放性設計題,回答者需要了解自動駕駛模型的基本功能和研發(fā)中涉及到的主要問題,并結合深度學習領域的相關知識給出設計方案。

自動駕駛模型是自動駕駛系統(tǒng)的重要組成部分,其在功能上試圖模仿人類司機,通過給定當前的車輛狀態(tài)和周圍環(huán)境信息,輸出為對車輛控制信號。傳統(tǒng)的駕駛模型設計方法人為地將自動駕駛任務分解成車道識別、場景抽象、路徑規(guī)劃和控制決策等多個子任務,然后再根據各個子任務的輸出,通過人工定義的規(guī)則來控制汽車的前進;而通過建立從輸入信號到輸出信號的端到端模型,可以

無需引入大量的人工規(guī)則來控制汽車的行駛;

使整個自動駕駛系統(tǒng)的結構更加簡單、高效;

使模型自主地學到人沒有指定的子任務。

而對于端到端駕駛模型的具體設計,這里介紹業(yè)界較有影響力的工作——Nivdia于2016年提出的PilotNet模型以供參考。

PilotNet模型是一個端到端的深度神經網絡,可以在自動駕駛系統(tǒng)中控制車輛前進的方向。模型根據安裝在汽車擋風玻璃前的三個攝像頭采集到的原始圖片,通過深度神經網絡學習出汽車前進所需要轉動的角度。其整體架構如 Fig. 2 所示 [3]。

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

Figure 1:Nivdia端到端的自動駕駛系統(tǒng)

PilotNet是一個9層神經網絡,由1個歸一化層(Normalization Layer)、5個卷積層(Convolutional Layer)和3個全連接層(Fully Connected Layer)組成,如 fig. 3 [4] 所示。模型的輸入為映射到YUV平面的原始輸入圖像,輸出為車輛前進需要偏轉的方向。網絡的前三個卷積層采用5*5的卷積核,后兩個卷積層采用3*3的卷積核。訓練數(shù)據包含在不同類型道路上(高速公路、住宅區(qū)的街道、鄉(xiāng)間小路等)、不同光線強度、不同天氣條件下的真實的汽車行駛過程中收集到的視頻采樣圖片。

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

Figure 2: PilotNet網絡結構圖

PilotNet在模擬仿真和實際路測均取得較好的實驗結果。實驗中定義車輛自動化程度為評測指標,即:

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

模擬系統(tǒng)中車輛偏離道路中心線超過一米時會發(fā)生一次人工干預,并假設人工干預平均需要消耗的時間約為6s/次。PilotNet模型在仿真系統(tǒng)上的評測結果為90%,路測指標可以達到98%。

【問題2】

如何設計一個基于增強學習的自動駕駛決策系統(tǒng)?

簡述算法設計思路

分析與解答

傳統(tǒng)的自動駕駛決策系統(tǒng)多數(shù)采用人工定義的規(guī)則,但是人工定義的規(guī)則不夠全面,容易漏掉一些邊界情況,因而會考慮采用增強學習的原理設計一個自動駕駛的決策系統(tǒng),使自動駕駛的決策系統(tǒng)能從數(shù)據中自動學習并優(yōu)化自身的決策過程。

對于這一問題的解答可以參考Mobileye提出的基于增強學習的多智能體決策系統(tǒng) [5] 。自動駕駛的決策系統(tǒng)不同于傳統(tǒng)的機器人決策系統(tǒng):首先,其屬于多智能體的場景,其他智能體的行為難以預測,并會對主智能體的行為造成影響;其次,在決策中需要確保策略的安全性,安全地處理意料之外的場景,防止交通事故的發(fā)生。

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

所以,

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

如何基于深度神經網絡設計一個端到端的自動駕駛模型?

Figure 3: 雙向變道決策過程的DAG

擴展與總結

自動駕駛系統(tǒng)極其復雜,本章所涉及的內容僅僅涵蓋了其中一部分研發(fā)問題與進展。深度學習在自動駕駛領域的應用在圖像識別、場景分割等計算機視覺相關領域中較為廣泛與深入,而在控制、決策方面的應用還處在初步的嘗試階段。通過本章的介紹,希望大家能夠初步了解深度學習在自動駕駛系統(tǒng)中的應用現(xiàn)狀與主流應用方式,而更深入的學習了解則請閱讀相關參考文獻。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 自動駕駛
    +關注

    關注

    791

    文章

    14540

    瀏覽量

    173757

原文標題:兩道算法工程師的面試題,80%的人答不上來

文章出處:【微信號:IV_Technology,微信公眾號:智車科技】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    西井科技自動駕駛模型獲得國際認可

    近日,西井科技AI創(chuàng)研團隊在國際權威自動駕駛算法榜單NAVSIM v2中脫穎而出,憑借創(chuàng)新的自動駕駛
    的頭像 發(fā)表于 10-15 17:20 ?169次閱讀

    文讀懂特斯拉自動駕駛FSD從輔助的演進

    [首發(fā)于智駕最前沿微信公眾號]自動駕駛行業(yè)發(fā)展至今,特斯拉直被很多企業(yè)對標,其FSD系統(tǒng)的每次更新,都會獲得非常多人的關注。早期自動駕駛
    的頭像 發(fā)表于 10-11 09:13 ?131次閱讀
    <b class='flag-5'>一</b>文讀懂特斯拉<b class='flag-5'>自動駕駛</b>FSD從輔助<b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>的演進

    自動駕駛模型為什么會有不確定性?

    。為了能讓自動駕駛汽車做出正確、安全且符合邏輯的行駛動作,模型被提了出來。
    的頭像 發(fā)表于 09-28 09:20 ?367次閱讀
    <b class='flag-5'>自動駕駛</b><b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>大<b class='flag-5'>模型</b>為什么會有不確定性?

    自動駕駛相較傳統(tǒng)自動駕駛到底有何提升?

    各自專業(yè)模塊獨立承擔,再通過預定的接口協(xié)議將信息有序傳遞。與之相對照,“”(end-to-end)自動駕駛以統(tǒng)的大規(guī)模
    的頭像 發(fā)表于 09-02 09:09 ?355次閱讀
    <b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自動駕駛</b>相較傳統(tǒng)<b class='flag-5'>自動駕駛</b>到底有何提升?

    段式自動駕駛中到底有何優(yōu)勢?

    獨立的子系統(tǒng)。隨著深度學習的崛起,“段式”(single-stage end-to-end)的方法應運而生,它用
    的頭像 發(fā)表于 08-05 09:06 ?535次閱讀
    <b class='flag-5'>一</b>段式<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>在<b class='flag-5'>自動駕駛</b>中到底有何優(yōu)勢?

    Nullmax自動駕駛最新研究成果入選ICCV 2025

    Nullmax 在段式核心技術上的深厚積累與創(chuàng)新實力,尤其在
    的頭像 發(fā)表于 07-05 15:40 ?1375次閱讀
    Nullmax<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自動駕駛</b>最新研究成果入選ICCV 2025

    為什么自動駕駛模型有黑盒特性?

    、激光雷達數(shù)據)映射到控制輸出(如方向盤轉角、加速度、制動等),以深度神經網絡為核心,打通了從視覺駕駛行為的完整鏈條。它也代表了自動駕駛
    的頭像 發(fā)表于 07-04 16:50 ?437次閱讀
    為什么<b class='flag-5'>自動駕駛</b><b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>大<b class='flag-5'>模型</b>有黑盒特性?

    文帶你厘清自動駕駛架構差異

    [首發(fā)于智駕最前沿微信公眾號]隨著自動駕駛技術飛速發(fā)展,智能駕駛系統(tǒng)的設計思路也經歷了從傳統(tǒng)模塊化架構
    的頭像 發(fā)表于 05-08 09:07 ?616次閱讀
    <b class='flag-5'>一</b>文帶你厘清<b class='flag-5'>自動駕駛</b><b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>架構差異

    自動駕駛中基于規(guī)則的決策和模型有何區(qū)別?

    自動駕駛架構的選擇上,也經歷了從感知、決策控制、執(zhí)行的三段式架構到現(xiàn)在火熱的模型,尤其是在2024年特斯拉推出FSD V12后,各
    的頭像 發(fā)表于 04-13 09:38 ?3252次閱讀
    <b class='flag-5'>自動駕駛</b>中基于規(guī)則的決策和<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>大<b class='flag-5'>模型</b>有何區(qū)別?

    DiffusionDrive首次在自動駕駛中引入擴散模型

    ? ? 近年來,自動駕駛成為研究熱點,其核心在于從傳感器數(shù)據直接學習駕駛決策。然而,駕駛
    的頭像 發(fā)表于 03-08 13:59 ?1285次閱讀
    DiffusionDrive首次在<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自動駕駛</b>中引入擴散<b class='flag-5'>模型</b>

    自動駕駛技術研究與分析

    傳遞和全局優(yōu)化的優(yōu)勢,成為智能駕駛技術發(fā)展的重要方向。與傳統(tǒng)模塊化架構相比,技術通過深度神經網絡
    的頭像 發(fā)表于 12-19 13:07 ?1197次閱讀

    爆火的如何加速智駕落地?

    自動駕駛,唯有?)技術通過消除模塊間數(shù)據
    的頭像 發(fā)表于 11-26 13:17 ?1413次閱讀
    爆火的<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>如何加速智駕落地?

    連接視覺語言大模型自動駕駛

    自動駕駛在大規(guī)模駕駛數(shù)據上訓練,展現(xiàn)出很強的決策規(guī)劃能力,但是面對復雜罕見的駕駛場景,依然
    的頭像 發(fā)表于 11-07 15:15 ?953次閱讀
    連接視覺語言大<b class='flag-5'>模型</b>與<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自動駕駛</b>

    Waymo利用谷歌Gemini大模型,研發(fā)端自動駕駛系統(tǒng)

    邁新步,為其機器人出租車業(yè)務引入了種基于谷歌多模態(tài)大語言模型(MLLM)“Gemini”的全新訓練模型——“
    的頭像 發(fā)表于 10-31 16:55 ?2148次閱讀

    Mobileye自動駕駛解決方案的深度解析

    強大的技術優(yōu)勢。 Mobileye的解決方案概述 1.1 什么是
    的頭像 發(fā)表于 10-17 09:35 ?1083次閱讀
    Mobileye<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自動駕駛</b>解決方案的<b class='flag-5'>深度</b>解析