chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

科技是把雙刃劍:令人擔(dān)心的事情還是發(fā)生了

DPVg_AI_era ? 來(lái)源:lq ? 2019-06-15 09:11 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

AI造假技術(shù)終究還是被濫用了。美聯(lián)社報(bào)道稱(chēng),一名間諜使用 AI 生成的個(gè)人資料和圖片在知名全球職場(chǎng)社交平臺(tái)LinkedIn上欺騙聯(lián)系人,包括政治專(zhuān)家和政府內(nèi)部人士。目前在網(wǎng)絡(luò)引發(fā)了激烈的討論。

科技是把雙刃劍:令人擔(dān)心的事情還是發(fā)生了。

自DeepFakes技術(shù)誕生以來(lái),造假臉、假視頻的惡搞消息不斷,而基于GAN的相關(guān)技術(shù)讓這種惡搞“更上一層樓”——真人?假人?傻傻分不清。

先來(lái)看下兩個(gè)例子。

2015年,教皇方濟(jì)各 (Pope Francis) 訪美期間,“一個(gè)出人意料之舉”震驚了世界:只見(jiàn)他在向圣壇禮拜后,轉(zhuǎn)身順手將桌布一抽,上演了一出絕妙的“抽桌布”戲法,動(dòng)作之行云流水,令人膜拜。

相關(guān)視頻很快火遍了全美乃至全世界。但是,這是一個(gè)假視頻。

2015年現(xiàn)任教皇訪美,上演絕妙“抽桌布”戲法,美國(guó)主教看后表示不爽。當(dāng)然,這段視頻是假造的,但這并不影響其流行。來(lái)源:CNN

今年2月,英偉達(dá)StyleGAN開(kāi)源,而后一波“造假熱潮”來(lái)了——假貓、假人、假房源網(wǎng)站如“雨后春筍般”崛起。人們不禁感嘆:實(shí)在太逼真了!

StyleGAN生成的假房源

但在驚嘆之余,人們不禁對(duì)諸如此類(lèi)的AI技術(shù)表示擔(dān)憂(yōu):若是被濫用,會(huì)嚴(yán)重影響人們的安全和隱私。

事情還是發(fā)生了。

根據(jù)美聯(lián)社報(bào)道,一名間諜使用 AI 生成的個(gè)人資料和圖片在知名全球職場(chǎng)社交平臺(tái)LinkedIn上欺騙聯(lián)系人!

文章地址:

https://apnews.com/bc2f19097a4c4fffaa00de6770b8a60d

Katie Jones在LinkedIn中的虛假信息

據(jù)稱(chēng),凱蒂·瓊斯(Katie Jones)在一個(gè)高級(jí)智庫(kù)工作, 與政治專(zhuān)家和政府內(nèi)部人士聯(lián)系在一起。其中包括一些零散的政府人物,如參議員的助手、副助理國(guó)務(wù)卿,以及目前正在考慮加入美聯(lián)儲(chǔ)的經(jīng)濟(jì)學(xué)家保羅?溫弗里(Paul Winfree)。

但其實(shí),她并不存在。

圖靈獎(jiǎng)得主、Facebook首席科學(xué)家Yann Lecun對(duì)此發(fā)推表示:

顯然,GAN在LinkedIn上被用來(lái)創(chuàng)建虛假的個(gè)人資料照片,并用于國(guó)際工業(yè)間諜活動(dòng)。

人類(lèi)被戲謔:這個(gè)AI間諜堪比007,釣到不少“大V”

Katie Jones似乎很關(guān)注華盛頓的政治局勢(shì)。

這位30歲的紅發(fā)女郎聲稱(chēng)在一個(gè)頂級(jí)智庫(kù)工作,是美國(guó)國(guó)際戰(zhàn)略研究中心CSIS)的研究員。她與美國(guó)的一位副助理國(guó)務(wù)卿、一位參議員的高級(jí)助理以及正在考慮就職美聯(lián)儲(chǔ)席位的經(jīng)濟(jì)學(xué)家Paul Winfree均有聯(lián)系。

但是美聯(lián)社已經(jīng)確定,Katie Jones并不存在。

相反,這個(gè)人是隱藏在專(zhuān)業(yè)社交網(wǎng)站LinkedIn上的大量幻影資料之一。美聯(lián)社聯(lián)系的幾位專(zhuān)家表示,Jones的個(gè)人資料照片似乎是由一個(gè)計(jì)算機(jī)程序創(chuàng)建的。

CSIS航空安全項(xiàng)目和國(guó)防預(yù)算分析主任Todd Harrison發(fā)推表示:

現(xiàn)在我開(kāi)始懷疑我的 CSIS 同事中有多少是真正的人類(lèi), 而不是 AI 產(chǎn)生的。

他還調(diào)侃道:“Sam,你是真人嗎?”

“我相信這是一張假臉,”Mario Klingemann表示。Mario是一位德國(guó)藝術(shù)家,多年來(lái)一直在試驗(yàn)人工生成的肖像,他說(shuō)自己已經(jīng)審查了數(shù)萬(wàn)張這樣的肖像圖?!斑@張頭像有所有的特征?!?/p>

看了Jones個(gè)人資料和活動(dòng)的LinkedIn專(zhuān)家表示,這是職業(yè)社交網(wǎng)站間諜活動(dòng)的典型表現(xiàn)。作為全球名片簿,LinkedIn成為吸引間諜的強(qiáng)大磁鐵。

丹麥民主聯(lián)盟基金會(huì)智囊團(tuán)的項(xiàng)目主任Jonas Parello Plesner說(shuō),“它看起來(lái)像某種國(guó)營(yíng)業(yè)務(wù)?!睅啄昵埃琂onas是LinkedIn上間諜活動(dòng)的目標(biāo)。

與Facebook的朋友和家庭聚焦點(diǎn)不同,LinkedIn面向求職者和獵頭,這些人通常會(huì)放出簡(jiǎn)歷,建立龐大的聯(lián)系網(wǎng),向陌生人推銷(xiāo)項(xiàng)目。這種“把他們都聯(lián)系起來(lái)”的方式有助于填補(bǔ)網(wǎng)站上數(shù)百萬(wàn)個(gè)招聘職位的空缺,但它也為間諜提供了一個(gè)豐富的獵場(chǎng)。

過(guò)去幾年,英國(guó)、法國(guó)和德國(guó)官員都發(fā)出警告,詳細(xì)說(shuō)明外國(guó)間諜如何利用LinkedIn與數(shù)千人取得聯(lián)系。

在一份聲明中,LinkedIn表示它經(jīng)常對(duì)假帳戶(hù)采取行動(dòng),在2019年的前三個(gè)月中對(duì)其中數(shù)千個(gè)帳戶(hù)進(jìn)行了處理。它還說(shuō)“我們建議您與您認(rèn)識(shí)和信任的人聯(lián)系,而非任何人?!?/p>

Katie Jones的個(gè)人資料規(guī)模不大,有52個(gè)聯(lián)系人。

但是這些聯(lián)系人具有足夠大的影響力,接受Jones邀請(qǐng)的一些人也會(huì)因此對(duì)她信任。美聯(lián)社在今年3月初至4月初期間與其他大約40名與Jones有聯(lián)系的人進(jìn)行了交談,其中許多人說(shuō)他們經(jīng)常接受他們不認(rèn)識(shí)的人的邀請(qǐng)。

“我可能是LinkedIn歷史上最糟糕的用戶(hù),”特朗普總統(tǒng)的國(guó)內(nèi)政策委員會(huì)前副主任Winfree說(shuō),他在3月28日確認(rèn)了與Jones的聯(lián)系。

上個(gè)月,聯(lián)邦儲(chǔ)備委員會(huì)理事會(huì)的一個(gè)職位空缺,Winfree的名字出現(xiàn)了,他表示,自己很少登錄LinkedIn并傾向于批準(zhǔn)他所有堆積的邀請(qǐng)?!拔艺娴慕邮芰宋业拿恳粋€(gè)朋友邀請(qǐng),”Winfree說(shuō)。

在日內(nèi)瓦韋伯斯特大學(xué)教?hào)|亞事務(wù)的Lionel Fatton說(shuō),他不認(rèn)識(shí)Jones的事實(shí)讓他在3月份與她聯(lián)系時(shí)有短暫停頓。“我記得猶豫不決,”他說(shuō):“然后我想,'有什么害處?'”

Parello-Plesner指出,潛在的傷害可能是微妙的:連接到像Jones這樣的個(gè)人資料邀請(qǐng)意味著與背后的人進(jìn)行一對(duì)一的對(duì)話(huà),網(wǎng)站上的其他用戶(hù)可以將連接視為一種認(rèn)可。他說(shuō):“你降低了自己的警惕,也讓別人放松警惕?!?/p>

Jones的個(gè)人資料首先由倫敦Chatham House智囊團(tuán)的俄羅斯專(zhuān)家Keir Giles舉報(bào)。Giles最近陷入了針對(duì)俄羅斯反病毒公司卡巴斯基實(shí)驗(yàn)室的批評(píng)者的完全獨(dú)立的間諜活動(dòng)。所以當(dāng)他收到Katie Jones在LinkedIn上的邀請(qǐng)時(shí),他很懷疑。

Jones聲稱(chēng)自己多年來(lái)一直在華盛頓戰(zhàn)略與國(guó)際研究中心擔(dān)任“俄羅斯和歐亞大陸研究員”,但Giles表示,如果這是真的,“我應(yīng)該聽(tīng)說(shuō)過(guò)她。”

CSIS發(fā)言人Andrew Schwartz告訴美聯(lián)社,“沒(méi)有一位名叫Katie Jones的人為我們工作。”

Jones還聲稱(chēng)已獲得密歇根大學(xué)俄羅斯研究學(xué)位,但學(xué)校表示“無(wú)法找到任何一個(gè)以此名字從大學(xué)獲得這一學(xué)位的學(xué)生?!?/p>

在美聯(lián)社聯(lián)系網(wǎng)絡(luò)尋求評(píng)論后不久,Jones賬戶(hù)就從LinkedIn上消失了。通過(guò)LinkedIn和相關(guān)的AOL電子郵箱帳戶(hù)發(fā)送給Jones本人的郵件也沒(méi)有回復(fù)。

美聯(lián)社采訪的眾多專(zhuān)家表示,Katie Jones最吸引人的地方可能是她的臉,他們說(shuō)這似乎是人為創(chuàng)造的。

Klingemann和其他專(zhuān)家說(shuō),這張照片——一張藍(lán)綠色眼睛、褐色頭發(fā)和神秘微笑的女人的肖像——似乎是使用稱(chēng)為生成對(duì)抗網(wǎng)絡(luò)(GAN)的一系列計(jì)算機(jī)程序創(chuàng)建的,這可以創(chuàng)造出想象出來(lái)的人的逼真面孔。

GAN,有時(shí)被描述為一種人工智能形式,已經(jīng)受到越來(lái)越政策制定者的關(guān)注,盡管他們已經(jīng)在努力處理數(shù)字虛假信息了。周四,美國(guó)立法者舉行了他們的第一次聽(tīng)證會(huì),主要討論人為生成圖像的威脅。

南加利福尼亞大學(xué)創(chuàng)意技術(shù)研究所負(fù)責(zé)圖形實(shí)驗(yàn)室愿景的Hao Li發(fā)布了一份數(shù)字報(bào)告清單,他認(rèn)為Jones的照片是由計(jì)算機(jī)程序創(chuàng)建的,包括Jones眼周?chē)牟灰恢?、她頭發(fā)周?chē)墓夂妥竽橆a上留下污跡。

基于GAN生成的圖像:逼真到可怕,能生成世間萬(wàn)物

這個(gè)造假技術(shù)到底有多厲害?

基于GAN的架構(gòu)一個(gè)又一個(gè)推出,英偉達(dá)StyleGAN就是其中一個(gè),多上幾張圖有助于你回憶:

這個(gè)模型并不完美,但確實(shí)有效,而且不僅僅可用于人類(lèi),還能用于汽車(chē)、貓、風(fēng)景圖像的生成。

英偉達(dá)研究人員在論文中寫(xiě)道,他們提出的新架構(gòu)可以完成自動(dòng)學(xué)習(xí),無(wú)監(jiān)督地分離高級(jí)屬性(例如在人臉上訓(xùn)練時(shí)的姿勢(shì)和身份),以及生成圖像中的隨機(jī)變化,并且可以對(duì)合成進(jìn)行更直觀且特定于比例的控制。

換句話(huà)說(shuō),這種新一代GAN在生成和混合圖像,特別是人臉圖像時(shí),可以更好地感知圖像之間有意義的變化,并且在各種尺度上針對(duì)這些變化做出引導(dǎo)。

例如,在上面的動(dòng)圖中,其實(shí)面部已經(jīng)完全變了,但“源”和“樣式”的明顯標(biāo)記顯然都得到了保留。為什么會(huì)這樣?請(qǐng)注意,所有這些都是完全可變的,這里說(shuō)的變量不僅僅是A + B = C,而且A和B的所有方面都可以存在/不存在,具體取決于設(shè)置的調(diào)整方式。

而StyleGAN之所以強(qiáng)大,就在于它使用了基于風(fēng)格遷移的全新生成器架構(gòu):

傳統(tǒng)生成器架構(gòu)和基于風(fēng)格的生成器架構(gòu)對(duì)比

在傳統(tǒng)方式中,隱碼(latent code)是通過(guò)輸入層提供給生成器的,即前饋網(wǎng)絡(luò)的第一層(上圖中的a部分)。而英偉達(dá)團(tuán)隊(duì)完全省略了輸入層,從一個(gè)學(xué)習(xí)的常量(learned constant)開(kāi)始,從而脫離了傳統(tǒng)的設(shè)計(jì)(圖1b,右)。在輸入隱空間Z中,給定一個(gè)隱碼z,一個(gè)非線性網(wǎng)絡(luò) f:Z→W首先生成w∈W(圖1b,左)。

英偉達(dá)團(tuán)隊(duì)的生成器架構(gòu)可以通過(guò)對(duì)樣式進(jìn)行特定尺度的修改來(lái)控制圖像合成??梢詫⒂成渚W(wǎng)絡(luò)和仿射變換看作是一種從學(xué)習(xí)分布(learned distribution)中為每種樣式繪制樣本的方法,而將合成網(wǎng)絡(luò)看作是一種基于樣式集合生成新圖像的方法。修改樣式的特定子集可能只會(huì)影響圖像的某些方面。

面對(duì)假臉生成算法,現(xiàn)有人臉識(shí)別系統(tǒng)幾乎束手無(wú)策

之前,大多數(shù)研究都集中在如何提高“換臉”技術(shù)上,也就是如何讓計(jì)算機(jī)生成超逼真的人臉。

誰(shuí)料,這種技術(shù)發(fā)展的濫用造成了反效果,也即所謂的“DeepFake”?,F(xiàn)在,DeepFake已被用于指代所有看起來(lái)或聽(tīng)起來(lái)像真的一樣的假視頻或假音頻。

針對(duì) Deepfake 視頻中人臉識(shí)別的漏洞,兩人在論文中對(duì)基于VGG和Facenet的人臉識(shí)別系統(tǒng)做了漏洞分析,還使用SVM方法評(píng)估了 DeepFake 的幾種檢測(cè)方法,包括嘴唇動(dòng)作同步法和圖像質(zhì)量指標(biāo)檢測(cè)等。

結(jié)果令人遺憾——

無(wú)論是基于VGG還是基于Facenet的系統(tǒng),都不能有效區(qū)分GAN生成假臉與原始人臉。而且,越先進(jìn)的Facenet系統(tǒng)越容易受到攻擊。

VGG模型是2014年ILSVRC競(jìng)賽的第二名,第一名是GoogLeNet。但是VGG模型在多個(gè)遷移學(xué)習(xí)任務(wù)中的表現(xiàn)要優(yōu)于googLeNet。而且,從圖像中提取CNN特征,VGG模型是首選算法。它的缺點(diǎn)在于,參數(shù)量有140M之多,需要更大的存儲(chǔ)空間。但是這個(gè)模型很有研究?jī)r(jià)值。

Facenet該模型沒(méi)有用傳統(tǒng)的softmax的方式去進(jìn)行分類(lèi)學(xué)習(xí),而是抽取其中某一層作為特征,學(xué)習(xí)一個(gè)從圖像到歐式空間的編碼方法,然后基于這個(gè)編碼再做人臉識(shí)別、人臉驗(yàn)證和人臉聚類(lèi)等。

直方圖顯示了基于VGG和Facenet的人臉識(shí)別在高質(zhì)量人臉交換中的漏洞。

檢測(cè)Deepfake視頻

他們還考慮了幾種基線Deepfake檢測(cè)系統(tǒng),包括使用視聽(tīng)數(shù)據(jù)檢測(cè)唇動(dòng)和語(yǔ)音之間不一致的系統(tǒng),以及幾種單獨(dú)基于圖像的系統(tǒng)變體。這種系統(tǒng)的各個(gè)階段包括從視頻和音頻模態(tài)中提取特征,處理這些特征,然后訓(xùn)練兩個(gè)分類(lèi)器,將篡改的視頻與真實(shí)視頻分開(kāi)。

所有檢測(cè)系統(tǒng)的檢測(cè)結(jié)果如下表所示。

說(shuō)明一下表格中各種“符號(hào)”和數(shù)字的意思,你也可以直接跳過(guò)看本節(jié)最后結(jié)論:

在本系統(tǒng)中,使用MFCCs作為語(yǔ)音特征,以mouth landmarks之間的距離作為視覺(jué)特征。將主成分分析(PCA)應(yīng)用于聯(lián)合音視頻特征,降低特征塊的維數(shù),訓(xùn)練長(zhǎng)短期記憶(long short-term memory, LSTM)網(wǎng)絡(luò),將篡改和非篡改視頻進(jìn)行分離。

作為基于圖像的系統(tǒng),實(shí)現(xiàn)了以下功能:

Pixels+PCA+LDA:使用PCA-LDA分類(lèi)器將原始人臉作為特征,保留99%的方差,得到446維變換矩陣。

IQM+PCA+LDA:IQM特征與PCA-LDA分類(lèi)器結(jié)合,具有95%保留方差,導(dǎo)致2維變換矩陣。

IQM + SVM:具有SVM分類(lèi)器的IQM功能,每個(gè)視頻具有20幀的平均分?jǐn)?shù)。

基于圖像質(zhì)量測(cè)度(IQM)的系統(tǒng)借鑒了表示域(domain of presentation)的攻擊檢測(cè),表現(xiàn)出了較好的性能。作為IQM特征向量,使用129個(gè)圖像質(zhì)量度量,其中包括信噪比,鏡面反射率,模糊度等測(cè)量。

下圖為兩種不同換臉版本中性能最好的IQM+SVM系統(tǒng)的檢測(cè)誤差權(quán)衡(DET)曲線。

IQM + SVM Deepfake檢測(cè)

結(jié)果表明:

首先,基于唇部同步的算法不能檢測(cè)人臉交換,因?yàn)镚AN能夠生成與語(yǔ)音匹配的高質(zhì)量面部表情;因此,目前只有基于圖像的方法才能有效檢測(cè)Deepfake視頻。

其次,IQM+SVM系統(tǒng)對(duì)Deepfake視頻的檢測(cè)準(zhǔn)確率較高,但使用HQ模型生成的視頻具有更大的挑戰(zhàn)性,這意味著越先進(jìn)的人臉交換技術(shù)將愈發(fā)難以檢測(cè)。

AI研究發(fā)表和模型開(kāi)源,真的該制定一個(gè)規(guī)范了

Yann LeCun于2月在Twitter上提問(wèn):

講真,要是當(dāng)初知道卷積神經(jīng)網(wǎng)絡(luò)(CNN)會(huì)催生DeepFake,我們還要不要發(fā)表CNN?

LeCun說(shuō):“問(wèn)個(gè)嚴(yán)肅的問(wèn)題:卷積神經(jīng)網(wǎng)絡(luò)(CNN)被用于(或開(kāi)發(fā))各種各樣的應(yīng)用。很多這樣的應(yīng)用對(duì)世界起到了積極影響,例如,醫(yī)療影像、汽車(chē)安全、內(nèi)容過(guò)濾、環(huán)境監(jiān)控等等。

“但有的應(yīng)用則可能起到負(fù)面的效果,或者說(shuō)侵犯隱私,例如,公眾場(chǎng)所的人臉識(shí)別系統(tǒng)、進(jìn)攻性武器,以及有偏見(jiàn)的“過(guò)濾”系統(tǒng)……

“那么,假設(shè)在上世紀(jì)80年代那時(shí)我們能夠預(yù)見(jiàn)CNN的這些負(fù)面影響,我們?cè)摬辉摪袰NN模型保密不公開(kāi)呢?“

幾點(diǎn)想法:

最終,CNN(或者類(lèi)似的東西)還是會(huì)被其他人發(fā)明出來(lái)(實(shí)際上,有些人可以說(shuō)差不多已經(jīng)做到了)。其實(shí),福島邦彥就跟我說(shuō),他80年代末的時(shí)候正在研究一種用BP訓(xùn)練的新認(rèn)知機(jī)(Neocogitron),但看到我們1898年發(fā)表的神經(jīng)計(jì)算論文“大感震驚”(shocked),然后停止了他的項(xiàng)目。

開(kāi)源CNN或深度學(xué)習(xí)軟件平臺(tái)直到2002年才出現(xiàn)(CNN是20世紀(jì)90年代早期商業(yè)軟件包SN和2002年開(kāi)源的Lush軟件包的一項(xiàng)功能。20世紀(jì)90年代中后期才開(kāi)始有OSS分發(fā))。因此,在某種程度上,CNN直到2002年才完全發(fā)表(released)。但那時(shí)基本沒(méi)有什么人關(guān)注CNN,或者想到用Lush來(lái)訓(xùn)練CNN?!?/p>

LeCun的這番話(huà),可以說(shuō)是為他此前的“表態(tài)”做出了完美的解釋。是的,這里說(shuō)的還是關(guān)于OpenAI模型開(kāi)源的那件事。

但是,通過(guò)此次事件來(lái)看,OpenAI覺(jué)得由于模型過(guò)于強(qiáng)大而不開(kāi)源的擔(dān)憂(yōu)興許是正確。

當(dāng)然,現(xiàn)在業(yè)界的重點(diǎn)已經(jīng)從最初的口水戰(zhàn)聚焦到AI研究發(fā)表和開(kāi)源政策的討論上來(lái)。

現(xiàn)在能夠肯定的是,關(guān)于AI研究發(fā)表和模型開(kāi)源,相關(guān)的政策真的需要制定了。OpenAI在擔(dān)心模型被濫用時(shí)舉了DeepFake為例,DeepFake是基于CNN構(gòu)建的圖像生成模型,由于強(qiáng)大的圖像生成能力,能夠生成以假亂真的人臉,甚至騙過(guò)先進(jìn)的人臉識(shí)別模型。

那么,還是回到那個(gè)嚴(yán)肅的問(wèn)題:

你認(rèn)為強(qiáng)大的技術(shù)是否該開(kāi)源呢?

歡迎留言給出你的意見(jiàn)。

PS:

你能辨別真臉和假臉嗎?不妨到這個(gè)網(wǎng)站測(cè)試一下:

http://www.whichfaceisreal.com/

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 圖像
    +關(guān)注

    關(guān)注

    2

    文章

    1096

    瀏覽量

    42257
  • AI
    AI
    +關(guān)注

    關(guān)注

    91

    文章

    39126

    瀏覽量

    299791
  • GaN
    GaN
    +關(guān)注

    關(guān)注

    21

    文章

    2358

    瀏覽量

    80095

原文標(biāo)題:AI版007恐怖上演!間諜用GAN生成假頭像,大肆網(wǎng)釣政客大V

文章出處:【微信號(hào):AI_era,微信公眾號(hào):新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    光纜中芯數(shù)的增加會(huì)帶來(lái)什么好處或問(wèn)題嗎

    光纜中芯數(shù)的增加是一雙刃劍,既帶來(lái)了顯著的傳輸優(yōu)勢(shì),也引入了工程、成本和維護(hù)上的挑戰(zhàn)。以下是具體分析: 一、芯數(shù)增加帶來(lái)的核心好處 1. 傳輸容量指數(shù)級(jí)提升 多路并行傳輸:每芯光纖可獨(dú)立傳輸數(shù)據(jù)
    的頭像 發(fā)表于 01-22 10:01 ?99次閱讀
    光纜中芯數(shù)的增加會(huì)帶來(lái)什么好處或問(wèn)題嗎

    微機(jī)消諧裝置即二次消諧裝置是雙刃劍,是“神器”?還是麻煩源頭?

    微機(jī)消諧裝置是一個(gè)優(yōu)點(diǎn)突出、但絕非完美的技術(shù)解決方案。它極大地提升了我們應(yīng)對(duì)鐵磁諧振的能力,但也對(duì)我們的專(zhuān)業(yè)知識(shí)和運(yùn)維水平提出了更高要求。它用好、管好,是保障PT安全、減輕我們工作負(fù)擔(dān)的重要一環(huán)。 對(duì)它保持一份“信任但不依賴(lài),使用同時(shí)警惕”的態(tài)度,是最專(zhuān)業(yè)的運(yùn)維視角。
    的頭像 發(fā)表于 01-16 16:10 ?741次閱讀
    微機(jī)消諧裝置即二次消諧裝置是<b class='flag-5'>雙刃劍</b>,是“神器”?<b class='flag-5'>還是</b>麻煩源頭?

    人形機(jī)器人供應(yīng)商新傳動(dòng)啟動(dòng)上市輔導(dǎo)工作

    證監(jiān)會(huì)官網(wǎng)信息顯示,杭州新機(jī)電傳動(dòng)股份有限公司(簡(jiǎn)稱(chēng)“新傳動(dòng)”)已于1月9日啟動(dòng)上市輔導(dǎo)工作,中信證券擔(dān)任其輔導(dǎo)機(jī)構(gòu)。
    的頭像 發(fā)表于 01-13 17:34 ?1570次閱讀

    商業(yè)綜合體充電站:不只是充電樁,更是智慧運(yùn)營(yíng)的流量入口與利潤(rùn)中心

    在電動(dòng)汽車(chē)滲透率持續(xù)攀升的今天,商業(yè)綜合體停車(chē)場(chǎng)內(nèi)一排排充電樁,早已不是新鮮事物。然而,對(duì)許多商場(chǎng)運(yùn)營(yíng)者而言,這些設(shè)施卻像一雙刃劍:它們本是吸引新能源車(chē)主流消費(fèi)人群的利器,卻又常因管理混亂、盈利
    的頭像 發(fā)表于 12-17 14:21 ?616次閱讀
    商業(yè)綜合體充電站:不只是充電樁,更是智慧運(yùn)營(yíng)的流量入口與利潤(rùn)中心

    電能質(zhì)量在線監(jiān)測(cè)裝置的數(shù)據(jù)壓縮存儲(chǔ)功能對(duì)數(shù)據(jù)傳輸速度有影響嗎?

    電能質(zhì)量在線監(jiān)測(cè)裝置的數(shù)據(jù)壓縮存儲(chǔ)功能對(duì)數(shù)據(jù)傳輸速度的影響是 “雙刃劍” : 核心正面影響: 壓縮后數(shù)據(jù)量減小,大幅降低傳輸帶寬需求,縮短傳輸時(shí)間 (尤其適用于大文件如暫態(tài)錄波、歷史數(shù)據(jù)批量上傳
    的頭像 發(fā)表于 12-11 16:43 ?1151次閱讀
    電能質(zhì)量在線監(jiān)測(cè)裝置的數(shù)據(jù)壓縮存儲(chǔ)功能對(duì)數(shù)據(jù)傳輸速度有影響嗎?

    俄羅斯數(shù)百輛保時(shí)捷突遭“鎖死”斷電,VTS系統(tǒng)的雙刃劍

    電子發(fā)燒友網(wǎng)綜合報(bào)道 自11月28日起,俄羅斯多個(gè)城市爆發(fā)了一場(chǎng)令車(chē)主措手不及的汽車(chē)“集體癱瘓”事件。數(shù)百輛保時(shí)捷在毫無(wú)預(yù)警的情況下突然鎖死、斷電,完全無(wú)法啟動(dòng),導(dǎo)致車(chē)主被困路邊。從莫斯科到圣彼得堡,從克拉斯諾達(dá)爾到其他主要城市,保時(shí)捷車(chē)主正經(jīng)歷著一場(chǎng)前所未有的“電子困境”。 ? 俄羅斯最大汽車(chē)經(jīng)銷(xiāo)商羅爾夫公司(Rolf)證實(shí),此次故障影響了2013年后生產(chǎn)的所有保時(shí)捷車(chē)型,無(wú)論發(fā)動(dòng)機(jī)類(lèi)型均未能幸免。故障車(chē)輛均搭載原廠
    的頭像 發(fā)表于 12-08 07:57 ?5322次閱讀

    面對(duì)醫(yī)療、工業(yè)、航空航天等不同領(lǐng)域,電源濾波器如何“量體裁衣”?

    作為連接電源與負(fù)載的關(guān)鍵組件,通過(guò)精準(zhǔn)濾除高頻噪聲與諧波干擾,為精密儀器構(gòu)建起一道無(wú)形的電磁防護(hù)屏障。 一、電磁干擾的雙刃劍:威脅與挑戰(zhàn) 現(xiàn)代電子設(shè)備產(chǎn)生的電磁干擾(EMI)呈現(xiàn)復(fù)雜化趨勢(shì)。開(kāi)關(guān)電源的快速開(kāi)關(guān)動(dòng)作
    的頭像 發(fā)表于 11-10 17:09 ?1334次閱讀

    使用平頭哥池CDK點(diǎn)亮RV-STAR的板載LED

    ;setting, 如果你看到的setting下面是一片空白的話(huà),心里也不要慌,Git Pane窗口最大化就好了。至于如何安裝微軟的git工具,這又是另一個(gè)故事了,我不想寫(xiě)了(還是因?yàn)樽约簯校?,我自?/div>
    發(fā)表于 11-05 10:36

    高幀頻,Cameralink Full接口,高速無(wú)人機(jī)對(duì)抗AI模塊Viztra-HE052F

    高速無(wú)人機(jī)速度快、機(jī)動(dòng)性高、低成本的特點(diǎn)讓其在很多領(lǐng)域的作用日漸凸顯。但它也是一雙刃劍,如何反制高速無(wú)人機(jī)是一大難點(diǎn)。速度太快解除限制的高速無(wú)人機(jī)速度能夠輕松達(dá)到200km/h,在這樣的高速狀態(tài)下
    的頭像 發(fā)表于 11-04 17:57 ?1860次閱讀
    高幀頻,Cameralink Full接口,高速無(wú)人機(jī)對(duì)抗AI模塊Viztra-HE052F

    季豐電子與盛科技達(dá)成戰(zhàn)略合作

    8月29日,在盛科技成立20周年慶祝活動(dòng)上,季豐電子與盛科技舉行了正式的戰(zhàn)略合作簽約儀式。
    的頭像 發(fā)表于 09-01 18:08 ?1106次閱讀

    有方科技端側(cè)AI解決方案賦能千行百業(yè)

    在瑪麗·米克爾的《人工智能趨勢(shì)報(bào)告》中揭示了一個(gè)關(guān)鍵趨勢(shì):AI模型的訓(xùn)練成本正在飛速上漲,但推理成本卻在過(guò)去兩年內(nèi)大幅下降了99%。這看似矛盾的“成本與性能的悖論”,恰似一雙刃劍,既為AI產(chǎn)業(yè)劈開(kāi)
    的頭像 發(fā)表于 07-09 16:16 ?871次閱讀

    PCB表面處理丨沉錫工藝深度解讀

    無(wú)雜質(zhì)焊接時(shí),沉錫層與銅基材形成的金屬間化合物能完美保持焊接界面的純凈性,這項(xiàng)優(yōu)勢(shì)使其成為高頻信號(hào)傳輸設(shè)備的理想選擇。工藝的化學(xué)特性猶如雙刃劍,其儲(chǔ)存有效期通常被嚴(yán)
    的頭像 發(fā)表于 05-28 07:33 ?2892次閱讀
    PCB表面處理丨沉錫工藝深度解讀

    大模型AI的&quot;雙刃劍&quot;:數(shù)據(jù)安全與可靠性挑戰(zhàn)與破局之道

    在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的浪潮中,數(shù)據(jù)要素已然成為驅(qū)動(dòng)經(jīng)濟(jì)社會(huì)創(chuàng)新發(fā)展的核心引擎。從智能制造到智慧城市,從電子商務(wù)到金融科技,數(shù)據(jù)要素的深度融合與廣泛應(yīng)用,正以前所未有的力量重塑著產(chǎn)業(yè)格局與經(jīng)濟(jì)形態(tài)。 然而,隨著數(shù)據(jù)規(guī)模化應(yīng)用與跨境流動(dòng)加速,安全漏洞、隱私泄露、數(shù)據(jù)篡改等風(fēng)險(xiǎn)日益凸顯。如何構(gòu)建可信、可控、可追溯的數(shù)據(jù)要素體系,已成為關(guān)乎數(shù)字經(jīng)濟(jì)健康發(fā)展的“必答題”。 數(shù)字經(jīng)濟(jì)發(fā)展的一日千里,隨之而來(lái)的是對(duì)數(shù)
    的頭像 發(fā)表于 04-24 17:25 ?1024次閱讀
    大模型AI的&quot;<b class='flag-5'>雙刃劍</b>&quot;:數(shù)據(jù)安全與可靠性挑戰(zhàn)與破局之道

    AFE5805使用了不同頻率的采樣時(shí)鐘,采樣頻率高于35M后,F(xiàn)CLK信號(hào)的占空比發(fā)生了畸變,如何解決?

    在使用AFE5805過(guò)程中,我們分別使用了不同頻率的采樣時(shí)鐘,記過(guò)發(fā)現(xiàn)采樣頻率高于35M后,F(xiàn)CLK信號(hào)的占空比發(fā)生了畸變,這種畸變是時(shí)有時(shí)無(wú)的,不知道是什么原因引起的?如何解決?
    發(fā)表于 02-10 06:26