3軟件設(shè)計(jì)及實(shí)現(xiàn)
根據(jù)硬件架構(gòu),分別對DSP和FPGA進(jìn)行軟件功能分析和具體編程實(shí)現(xiàn)。
FPGA部分使用Xilinx公司的ISE10.1開發(fā)軟件,采用Verilog語言,接受從接口管腳輸入的編碼器信號(hào),相應(yīng)地實(shí)現(xiàn)對海德漢高精度增量式編碼器輸出并經(jīng)細(xì)分盒細(xì)分后的TTL脈沖計(jì)數(shù)和參考信號(hào)生成,或者是與絕對式編碼器的Endat2.2通信。DSP部分開發(fā)軟件采用TI公司的CCS5.2,使用C語言進(jìn)行編程。DSP完成對信號(hào)最終的位置合成處理,在這里,首先要定義編碼器的相關(guān)參數(shù),如:編碼器總刻度數(shù)、分辨率、帶參考碼道的增量式編碼器的參考點(diǎn)數(shù),還要考慮增量信號(hào)進(jìn)入FPGA前的細(xì)分?jǐn)?shù)(取決于IBV600),以及FPGA對TTL計(jì)數(shù)是否進(jìn)行四倍頻等。使用時(shí),根據(jù)具體編碼器類型進(jìn)行參數(shù)修改。
軟件實(shí)現(xiàn)了對高精度海德漢增量式編碼器和絕對式編碼器的位置值的讀取。下面將分別進(jìn)行介紹。
3.1測量增量式編碼器位置值
3.1.1 相關(guān)部分的FPGA設(shè)計(jì)
增量式編碼器是一旋轉(zhuǎn)式光電編碼器,根據(jù)軸所轉(zhuǎn)過的角度,輸出一系列脈沖。一般來說編碼器輸出有三相信號(hào):A、B、Z。A、B兩相信號(hào)是相位相差90°的正交方波脈沖串,每個(gè)脈沖代表被測對象旋轉(zhuǎn)了一定的角度,A、B之間的相位關(guān)系則反映了被測對象的旋轉(zhuǎn)方向,即當(dāng)A相超前B相,轉(zhuǎn)動(dòng)方向?yàn)檎D(zhuǎn);當(dāng)B相超前A相,轉(zhuǎn)動(dòng)方向?yàn)榉崔D(zhuǎn)。Z信號(hào)是一個(gè)代表參考碼道的脈沖信號(hào),可用于調(diào)零、對位。對象每旋轉(zhuǎn)一定角度時(shí),A、B兩者的脈沖發(fā)生變化,根據(jù)AB相位變化方向和脈沖個(gè)數(shù)來計(jì)算角位移[8]。當(dāng)AB相位變化為00 10 11 01 00時(shí),為輸出正轉(zhuǎn)計(jì)數(shù)脈沖,脈沖計(jì)數(shù)P加1;當(dāng)AB相位變化為00 01 11 10 00時(shí),為輸出反轉(zhuǎn)計(jì)數(shù)脈沖,脈沖計(jì)數(shù)P減1。相位變化幾次計(jì)數(shù)操作幾次。需要指出的是,相位的狀態(tài)變化只有嚴(yán)格按照上面8中方式改變時(shí),F(xiàn)PGA才進(jìn)行計(jì)數(shù)操作。在Verilog編程時(shí),可以把前一個(gè)AB相電平狀態(tài)和后一個(gè)AB相電平狀態(tài)組成一個(gè)散轉(zhuǎn)地址向量,然后把這個(gè)向量作為條件語句,進(jìn)行計(jì)數(shù)操作。比如,當(dāng)AB從00變?yōu)?0時(shí),向量就為0010,P=P+1。相反,若AB從10變?yōu)?0,這個(gè)向量就為1000,P=P-1。下面為FPGA讀取TTL數(shù)據(jù)并組成散轉(zhuǎn)地址向量的Verilog代碼:
always @(posedgeinClk)
begin
regUa1a2State <= {inIncUa1,inIncUa2};//讀取AB向量
if(regUa1a2State!=regAllState[1:0]) //狀態(tài)變化
begin
regAllState<= {regAllState[1:0],regUa1a2State};//組成新的散轉(zhuǎn)地址向量
regPulseStateChanged<= 1;
end
elsebegin
regPulseStateChanged<= 0;
end
end
另外,增量式編碼器不具有斷電記憶功能,每次啟動(dòng)時(shí)都需確定零位。以前,只有一個(gè)零位參考點(diǎn)時(shí),有時(shí)需轉(zhuǎn)360°Z相位出現(xiàn)脈沖才能確定零位。高精度海德漢編碼器參考點(diǎn)碼道有若干個(gè)距離編碼參考點(diǎn),任一參考點(diǎn)經(jīng)過讀數(shù)頭時(shí),Z相位輸出脈沖。此時(shí),需要把之前的脈沖計(jì)數(shù)P保存下來(記為Q),P清零。這樣,每次Z相位輸出脈沖時(shí),P的數(shù)值就為上次經(jīng)過參考點(diǎn)后的脈沖數(shù),這是DSP確定零位和當(dāng)前參考點(diǎn)的重要依據(jù)。
FPGA測得4個(gè)讀數(shù)頭的4組信息,寫入雙口,等待DSP讀取。每組寫入雙口的數(shù)據(jù)有兩個(gè):①上一次過參考碼道時(shí)的計(jì)數(shù)增量計(jì)數(shù)RefPulseCnt(Q值),②增量計(jì)數(shù)PulseCnt(P值)。
3.1.2 相關(guān)部分的DSP設(shè)計(jì)
DSP程序中先生成增量式編碼器參考碼道的參考角度,也就是每個(gè)距離編碼參考點(diǎn)所對應(yīng)的脈沖數(shù)以及角度。又因?yàn)槊績蓚€(gè)參考點(diǎn)間脈沖數(shù)(即Q值)是不同且唯一的,可以根據(jù)讀取的FPGA雙口中的Q值確定最近經(jīng)過的參考點(diǎn),然后“查表”可以得到該參考點(diǎn)的角度。同時(shí),DSP讀取P值再乘以分辨率得到已當(dāng)前參考點(diǎn)后的角度,合成后兩者相加可以確定相應(yīng)讀數(shù)頭測得的位置值。分辨率為360°/刻度值總刻度數(shù)*進(jìn)入FPGA前細(xì)分?jǐn)?shù)*4(本模塊FPGA對TTL計(jì)數(shù)的處理實(shí)質(zhì)就是對AB路信號(hào)進(jìn)行了4倍頻)所有讀數(shù)頭過完零以后,輸入到DSP的4路讀數(shù)頭信號(hào)相對參考碼道的零點(diǎn)而言,都有一個(gè)絕對位置。一般來說,安裝讀數(shù)頭時(shí),要參考測量的單個(gè)讀數(shù)頭的位置值對4個(gè)讀數(shù)頭的位置要進(jìn)行調(diào)整,通常,相鄰兩個(gè)讀數(shù)頭之間相差90度最好。以任何一個(gè)讀數(shù)頭為基準(zhǔn),其他3個(gè)讀數(shù)頭的絕對位置相對基準(zhǔn)讀數(shù)頭而言的位置差為90°,180°,270°。為了簡化,以電路板輸入端口的1作為基準(zhǔn)量。合成位置量為A=(A1+A2+A3+A4-90-180-270)/4=(A1+A2+A3+A4-540°)/4,由于有安裝系統(tǒng)誤差,且要求合成位置值要大于0,計(jì)算時(shí)可以用520°替代540°。其范圍為(e,e+359.999999),e為誤差,這個(gè)時(shí)候要對360做求模處理,最后得到的合成值的工作范圍就為(0,359.9999999)。
3.2 測量絕對式編碼器的位置值
模塊參考海德漢公司提供的endat2.2相關(guān)技術(shù)手冊[5] [9],設(shè)置好參數(shù):根據(jù)編碼器位數(shù)和模式命令設(shè)置傳輸?shù)臄?shù)據(jù)位數(shù)ct_tx_oem_value、ct_rx_oem_value;需要傳送的附加信息個(gè)數(shù)ai_count;傳輸時(shí)鐘頻率參數(shù)freq_oem_value;恢復(fù)時(shí)間III ( tST)的設(shè)置參數(shù)freq_tst_value等。測量EnDat2.2的子文件根據(jù)參數(shù)轉(zhuǎn)換狀態(tài)機(jī),進(jìn)行相應(yīng)操作。另外,程序帶有電纜傳輸延遲測量模塊pdm。然后,按照下圖4的格式根據(jù)自己對信息的需求設(shè)置向編碼器傳輸?shù)男盘?hào)d_in。在系統(tǒng)時(shí)鐘上升沿到來后立即通過start_trans信號(hào)控制開始與編碼器通信。接收編碼器數(shù)據(jù),讀出相應(yīng)d_out信號(hào)數(shù)據(jù),得到代表位置值的數(shù)據(jù)寫入雙口。
圖4endat2.2輸入數(shù)據(jù)“d_in”
上圖中,Mode bits為6位模式指令,最基本的編碼器發(fā)送位置值模式為000111。模式指令和其他參數(shù)的含義都可以在技術(shù)手冊中查到。
DSP從FPGA雙口RAM中讀取絕對式信號(hào)數(shù)據(jù),取有效位數(shù)后再乘以該絕對式編碼器的分辨率即得到位置信息。分辨率為360°/2^N,N是對應(yīng)的絕對式編碼器位數(shù)。
3.3 數(shù)據(jù)輸出
模塊通過RS422異步串行接口與上位機(jī)進(jìn)行通信,串行接口通過DSP的SCI口實(shí)現(xiàn),設(shè)計(jì)的模塊同時(shí)需要上位機(jī)發(fā)送的同步采樣頻率信號(hào),將其與DSP相連,作為中斷信號(hào)啟動(dòng)ISR功能。同時(shí),該信號(hào)管腳通過跳針把該外同步時(shí)鐘分給FPGA。這樣,保證兩者的時(shí)鐘源是統(tǒng)一的,然后DSP訪問FPGA的雙口就能實(shí)現(xiàn)正確讀取所需數(shù)據(jù)。過程時(shí)序示意圖如圖5所示:
?
圖5整體過程時(shí)序示意圖
如上圖所示,在t_1時(shí),F(xiàn)PGA即啟動(dòng)與編碼器的通信,在t_2時(shí),F(xiàn)PGA把增量式編碼器脈沖計(jì)數(shù)或者絕對式編碼器信息存入雙口,在t_3時(shí),外同步時(shí)鐘上升沿啟動(dòng)DSP中斷程序,讀取已經(jīng)存儲(chǔ)在FPGA雙口中的數(shù)據(jù)并合成位置值,合成量綱后通過RS422接口把絕對位置值傳遞給主控機(jī)箱。這樣,主控得到的數(shù)據(jù)是上一幀的數(shù)據(jù),即有一幀的延遲,時(shí)鐘頻率越大,延遲越小。因此,對采樣頻率有一定要求,不能太低。
4實(shí)驗(yàn)及數(shù)據(jù)分析
模塊設(shè)計(jì)好以后,需搭建平臺(tái)檢測是否實(shí)現(xiàn)功能。實(shí)驗(yàn)平臺(tái)如圖6所示:
圖6實(shí)驗(yàn)平臺(tái)
如圖6所示:打開電源控制開關(guān),然后從PC機(jī)把DSP和FPGA程序分別通過仿真器加載到F28335和XC3S700AN芯片中,打開主控機(jī)箱。最后,點(diǎn)擊CCS上的運(yùn)行鍵,撥動(dòng)編碼器,可在CCS軟件界面右上方的變量觀察窗口觀察編碼器位置值。界面如下圖7所示:
?
圖7實(shí)驗(yàn)時(shí),觀察位置值的CCS界面
本實(shí)驗(yàn)中,所使用的編碼器為23位海德漢絕對式編碼器ECN1023,外同步時(shí)鐘源為500HZ。FPGA內(nèi)部頻率為10MHz,向Endat2.2輸入的頻率為64MHz的32分頻。觀察到該界面中位置值為359.8117303848267度。在實(shí)驗(yàn)中通過real-time與自動(dòng)刷新功能還觀察到,界面上數(shù)據(jù)的變化與編碼器的轉(zhuǎn)動(dòng)幾乎同步,編碼器停止轉(zhuǎn)動(dòng)后,數(shù)據(jù)小數(shù)點(diǎn)后前3位之前的數(shù)據(jù)非常穩(wěn)定,第3、4、5位數(shù)據(jù)比較穩(wěn)定。由此可見,本模塊滿足了一定的測量速度和測量精度,能夠很好工作。
通過實(shí)驗(yàn)對本模塊的性能有了一定了解后,還需對精度進(jìn)行檢測。通過模塊與標(biāo)準(zhǔn)檢測儀同時(shí)測量一臺(tái)海德漢絕對式編碼器,360度測量正反相各測24組值。結(jié)果,正測RMS值為0.67角秒,極差為1.9角秒;反測RMS值為0.76角秒,極差為2.2角秒。兩組誤差曲線圖如下圖8所示:
?
圖8正反轉(zhuǎn)檢測兩組誤差數(shù)據(jù)曲線
從圖中觀察到,從0到23的24組數(shù)據(jù)皆是從0度到36度變化時(shí)測量得到的。如圖所示,兩組誤差曲線基本重合,可在最大誤差點(diǎn)加個(gè)修正值減小誤差。
結(jié)語
編碼器應(yīng)用廣泛。本文詳細(xì)介紹了一個(gè)測量各類海德漢編碼器的數(shù)據(jù)的通用且實(shí)用的模塊。該模塊基于Xilinx FPGA平臺(tái)和TI DSP平臺(tái),使用和調(diào)試方便,使用者可快速掌握;通過了實(shí)驗(yàn)和精度的檢測,實(shí)現(xiàn)了設(shè)計(jì)目的,工作可靠;模塊小巧,可以與上位機(jī)通信,可以很好的被結(jié)合到嵌入式系統(tǒng)中。目前,本模塊已用于實(shí)驗(yàn)轉(zhuǎn)臺(tái)用的增量式和絕對式編碼器數(shù)據(jù)的處理,擬結(jié)合到實(shí)驗(yàn)室驅(qū)動(dòng)控制機(jī)箱中,正進(jìn)一步開發(fā)它對海德漢絕對式編碼器Endat2.2附加信息的測量和處理。
評論