麻省理工學(xué)院(MIT)的研究人員開發(fā)出了一種可用于神經(jīng)網(wǎng)絡(luò)計算的高性能芯片,該芯片的處理速度可達其他處理器的7倍之多。
2018-03-19 15:20:02
4061 
卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種特殊類型的神經(jīng)網(wǎng)絡(luò),在圖像上表現(xiàn)特別出色。卷積神經(jīng)網(wǎng)絡(luò)由Yan LeCun在1998年提出,可以識別給定輸入圖像中存在的數(shù)字。
2022-08-10 11:49:06
19856 卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種特殊類型的神經(jīng)網(wǎng)絡(luò),在圖像上表現(xiàn)特別出色。卷積神經(jīng)網(wǎng)絡(luò)由Yan LeCun在1998年提出,可以識別給定輸入圖像中存在的數(shù)字。
2022-09-21 10:12:50
1168 在如今的網(wǎng)絡(luò)時代,錯綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進人們的視線,通過深度學(xué)習(xí)解決若干問題的案例越來越多。一些傳統(tǒng)的圖像
2024-01-11 10:51:32
3474 
麻省理工學(xué)院的研究人員開發(fā)了一種專用集成電路芯片,可以在物聯(lián)網(wǎng)設(shè)備上實現(xiàn),以抵御基于能量的側(cè)通道攻擊。加強個人數(shù)據(jù)保護工程師們開發(fā)了一種低能耗芯片,可以防止黑客從智能設(shè)備中提取隱藏信息。一名剛出
2022-03-24 10:43:29
摘要故障診斷是保證水輪發(fā)電機組安全運行的重要環(huán)節(jié)。軸心軌跡辨識是HGU故障診斷的一種有效方法。提出了一種基于綜合幾何特征和概率神經(jīng)網(wǎng)絡(luò)(CGC-PNN)的HGU軸軌識別方法。該方法從結(jié)構(gòu)、區(qū)域和邊界
2021-09-15 08:18:35
成為了非常重要的問題。 基于以上問題,本文提出了一種基于高效采樣算法的時序圖神經(jīng)網(wǎng)絡(luò)系統(tǒng) 。首先我們介紹用于時序圖神經(jīng)網(wǎng)絡(luò)采樣的高效采樣方法。采樣常常被用于深度學(xué)習(xí)中以降低模型的訓(xùn)練時間。然而現(xiàn)有的采樣
2022-09-28 10:34:13
多層感知機 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22
,稍有不同就無法復(fù)現(xiàn)論文的結(jié)果。而網(wǎng)絡(luò)結(jié)構(gòu)作為一種特殊的超參數(shù),在深度學(xué)習(xí)整個環(huán)節(jié)中扮演著舉足輕重的角色。在圖像分類任務(wù)上大放異彩的ResNet、在機器翻譯任務(wù)上稱霸的Transformer等網(wǎng)絡(luò)
2019-09-11 11:52:14
`麻省理工的研究人員,將鼠標變成了隱形的:簡單地說,這是一種基于紅外激光和紅外攝像頭的手勢辨認技術(shù),系統(tǒng)會“拍攝”你手部的運動,并將之轉(zhuǎn)換成鼠標的對應(yīng)操作。于是,即便你手中并沒有鼠標,只需要在桌子上
2012-12-06 12:00:09
學(xué)習(xí)和認知科學(xué)領(lǐng)域,是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計算模型,用于對函數(shù)進行估計或近似。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進行計算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)
2019-03-03 22:10:19
是一種常用的無監(jiān)督學(xué)習(xí)策略,在使用改策略時,網(wǎng)絡(luò)的輸出神經(jīng)元相互競爭,每一時刻只有一個競爭獲勝的神經(jīng)元激活。ART神經(jīng)網(wǎng)絡(luò)由比較層、識別層、識別閾值、重置模塊構(gòu)成。其中比較層負責接收輸入樣本,并將其傳遞
2019-07-21 04:30:00
人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認識過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對如何由輸入得到輸出的機理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實際問題。那有哪些辦法能實現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
取得了良好的性能。可以說,DNN其實是一種架構(gòu),是指深度超過幾個相似層的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),一般能夠達到幾十層,或者由一些復(fù)雜的模塊組成。ILSVRC(ImageNet大規(guī)模視覺識別挑戰(zhàn)賽)每年都不斷被深度
2018-05-08 15:57:47
今天做了一個神經(jīng)網(wǎng)絡(luò)模型,結(jié)果performance一直達不到要求,想問一下,是哪里出問題了呢?還有就是我的第二張圖只有一條曲線,這又是為什么呢,希望有大牛能幫忙解答
2018-05-03 15:45:15
具體的軟硬件實現(xiàn)點擊 http://mcu-ai.com/ MCU-AI技術(shù)網(wǎng)頁_MCU-AI
我們提出了一種利用由長短期記憶 (LSTM) 單元構(gòu)建的深度循環(huán)神經(jīng)網(wǎng)絡(luò)來降 噪心電圖信號 (ECG
2024-05-15 14:42:46
十余年來快速發(fā)展的嶄新領(lǐng)域,越來越受到研究者的關(guān)注。卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型是深度學(xué)習(xí)模型中最重要的一種經(jīng)典結(jié)構(gòu),其性能在近年來深度學(xué)習(xí)任務(wù)上逐步提高。由于可以自動學(xué)習(xí)樣本數(shù)據(jù)的特征表示,卷積
2022-08-02 10:39:39
的激光雷達物體識別技術(shù)一直難以在嵌入式平臺上實時運行。經(jīng)緯恒潤經(jīng)過潛心研發(fā),攻克了深度神經(jīng)網(wǎng)絡(luò)在嵌入式平臺部署所面臨的算子定制與加速、量化策略、模型壓縮等難題,率先實現(xiàn)了高性能激光檢測神經(jīng)網(wǎng)絡(luò)并成功地在嵌入式平臺(德州儀TI TDA4系列)上完成部署。系統(tǒng)功能目前該系統(tǒng):?支持接入禾賽Pandar 40和
2021-12-21 07:59:18
,看一下 FPGA 是否適用于解決大規(guī)模機器學(xué)習(xí)問題。卷積神經(jīng)網(wǎng)絡(luò)是一種深度神經(jīng)網(wǎng)絡(luò) (DNN),工程師最近開始將該技術(shù)用于各種識別任務(wù)。圖像識別、語音識別和自然語言處理是 CNN 比較常見的幾大應(yīng)用。
2019-06-19 07:24:41
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11
溫度無線傳感器網(wǎng)絡(luò)系統(tǒng)是由哪些部分組成的?怎樣去設(shè)計一種溫度無線傳感器網(wǎng)絡(luò)系統(tǒng)?溫度無線傳感器網(wǎng)絡(luò)系統(tǒng)設(shè)計時應(yīng)注意哪些事項?
2021-05-28 06:43:51
來福利了!
麻省理工電子電力筆記?。?/div>
2016-01-19 11:28:27
第6章 神經(jīng)網(wǎng)絡(luò)系統(tǒng)辨識-PPT及程序.rar
2018-03-18 20:56:09
一定的早熟收斂問題,引入一種自適應(yīng)動態(tài)改變慣性因子的PSO算法,使算法具有較強的全局搜索能力.將此算法訓(xùn)練的模糊神經(jīng)網(wǎng)絡(luò)應(yīng)用于語音識別中,結(jié)果表明,與BP算法相比,粒子群優(yōu)化的模糊神經(jīng)網(wǎng)絡(luò)具有較高
2010-05-06 09:05:35
美國麻省理工的電機學(xué)教材,教授的內(nèi)容比較樸實。可以下載看看推薦課程:張飛軟硬開源:基于STM32的BLDC直流無刷電機驅(qū)動器(視頻+硬件)http://url.elecfans.com/u/73ad899cfd
2016-08-03 21:36:26
解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實踐
2020-06-14 22:21:12
隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器 Copy東京理工大學(xué)的研究人員開發(fā)了一種名為“ Hiddenite”的新型加速器芯片,該芯片可以在計算稀疏“隱藏神經(jīng)網(wǎng)絡(luò)”時達到最高的精度
2022-03-17 19:15:13
最高的精度。由此表明非局部模塊可以作為一種比較通用的基本組件,在設(shè)計深度神經(jīng)網(wǎng)絡(luò)時使用。實驗及結(jié)果在這一節(jié)我們簡單介紹論文中描述的實驗及結(jié)果。 視頻的基線模型是 ResNet-50 C2D。三維輸出映射
2018-11-12 14:52:50
為了消除造紙工業(yè)抄紙過程中存在的解耦問題,提出了一種基于PID 神經(jīng)網(wǎng)絡(luò)的解耦方法。文章在介紹PID 神經(jīng)網(wǎng)絡(luò)原理的基礎(chǔ)上,給出了二變量PID 神經(jīng)元網(wǎng)絡(luò)解耦控制系統(tǒng)結(jié)構(gòu)圖,
2009-06-15 10:10:47
19 針對傳感器故障, 提出了一種基于RBF 神經(jīng)網(wǎng)絡(luò)的集成故障診斷方法。用RBF 神經(jīng)網(wǎng)絡(luò)建立傳感器故障模型, 對系統(tǒng)的狀態(tài)和故障參數(shù)進行在線估計, 然后將故障參數(shù)與修正的Bayes分類算
2009-07-14 11:58:19
13 本文首先分析了人工神經(jīng)網(wǎng)絡(luò)和秘密共享的相通之處,闡明了用人工神經(jīng)網(wǎng)絡(luò)來實現(xiàn)秘密共享是可能的;其次給出了一種基于人工神經(jīng)網(wǎng)絡(luò)的秘密共享的門限方案,詳細介紹了
2009-08-15 09:54:17
15 本文首先介紹了傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)BP 算法的優(yōu)缺點,并結(jié)合模擬退火算法局部搜索全局的特點,提出將模擬退火算法和傳統(tǒng)的BP 算法相結(jié)合,形成一種新的BP 神經(jīng)網(wǎng)絡(luò)算法,有效的解
2010-01-09 11:57:05
12 一種神經(jīng)網(wǎng)絡(luò)多用戶檢測器
本文提出采用Hopfield神經(jīng)網(wǎng)絡(luò)實現(xiàn)CDMA多用戶通信系統(tǒng)中多用戶信號的檢測.利用基于檢測序列最大后驗概率最佳多用戶檢測器的似然函數(shù)與Hop
2009-10-21 08:46:52
895 
美國麻省理工研發(fā)出新型電池
讓電池真正“驅(qū)動”汽車,這是人們長期以來對電動汽車的期望。日前,美國麻省理工學(xué)院的新型
2009-12-15 11:25:19
1115 麻省理工研發(fā)出新型LCD電視控制傳感器
據(jù)報道,麻省理工的一些聰明的學(xué)生已經(jīng)研發(fā)出一種新型LCD電視控制傳感器:利
2010-01-11 10:13:44
1210 Matlab,麻省理工的Matlab教材。
2015-12-21 14:42:13
0 Xilinx FPGA工程例子源碼:麻省理工實驗室的MIPS IP CORE
2016-06-07 15:13:15
9 一種基于深度神經(jīng)網(wǎng)絡(luò)的基音檢測算法_曹猛
2017-01-07 19:08:43
0 MIT教授馬林·索爾賈??撕屯麻_發(fā)出光學(xué)神經(jīng)網(wǎng)絡(luò)系統(tǒng)的重要部件——全新可編程納米光學(xué)處理器,這些光學(xué)處理器能在幾乎零能耗的情況下執(zhí)行人工智能中的復(fù)雜運算。
2017-06-16 14:52:12
850 蛋白質(zhì)二級結(jié)構(gòu)預(yù)測是結(jié)構(gòu)生物學(xué)中的一個重要問題。針對八類蛋白質(zhì)二級結(jié)構(gòu)預(yù)測,提出了一種基于遞歸神經(jīng)網(wǎng)絡(luò)和前饋神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)預(yù)測算法。該算法通過雙向遞歸神經(jīng)網(wǎng)絡(luò)建模氨基酸間的局部和長程相互作用
2017-12-03 09:41:14
9 神經(jīng)網(wǎng)絡(luò)是一種模擬人腦結(jié)構(gòu)的算法模型。其原理就在于將信息分布式存儲和并行協(xié)同處理。雖然每個單元的功能非常簡單,但大量單元構(gòu)成的網(wǎng)絡(luò)系統(tǒng)就能實現(xiàn)非常復(fù)雜的數(shù)據(jù)計算,并且還是一個高度復(fù)雜的非線性動力學(xué)習(xí)系統(tǒng)。
2017-12-05 15:06:43
54616 
神經(jīng)網(wǎng)絡(luò)系統(tǒng)辨識程序
2017-12-06 15:06:31
0 計基于GPU的加速庫 。cuDNN為深度神經(jīng)網(wǎng)絡(luò)中的標準流程提供了高度優(yōu)化的實現(xiàn)方式,例如convolution、pooling、normalization以及activation layers的前向以及后向過程。 cuDNN只是NVIDIA深度神經(jīng)網(wǎng)絡(luò)軟件開發(fā)包中的其中一種加速庫。
2017-12-08 10:40:02
2557 近期,麻省理工學(xué)院的研究人員開發(fā)了一種專用芯片,將神經(jīng)網(wǎng)絡(luò)計算的速度提高了 3 倍至 7 倍,同時將功耗降低了 95%。這將會使在智能手機上運行神經(jīng)網(wǎng)絡(luò)變得切實可行。
2018-03-06 10:22:07
3751 據(jù)MIT News報道,麻省理工學(xué)院(MIT)的研究人員開發(fā)出了一種可用于神經(jīng)網(wǎng)絡(luò)計算的高性能芯片,該芯片的處理速度可達其他處理器的7倍之多,而所需的功耗卻比其他芯片少94-95%。
2018-03-15 16:47:32
3783 近日,來自愛丁堡大學(xué)的研究人員提出了一種結(jié)合深度神經(jīng)網(wǎng)絡(luò)和樹模型的新型模型——深度神經(jīng)決策樹(Deep Neural Decision Trees, DNDT)。
2018-08-19 09:14:44
13331 由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會覺得兩者沒有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01
937 該團隊在麻省理工學(xué)院的計算機科學(xué)和人工智能實驗室 (Computer Science and Artificial Intelligence Lab) 開展了這項研究,共開發(fā)出了三個卷積神經(jīng)網(wǎng)絡(luò)
2018-09-12 14:19:35
4659 麻省理工學(xué)院的研究人員最近開發(fā)出一種神經(jīng)網(wǎng)絡(luò),能夠以相對較高的準確度對個人患有認知功能障礙的可能性做出預(yù)測。因此在一定程度上,我們可以將其理解為一種抑郁癥檢測器。
2018-09-26 10:36:10
3962 針對電力信息網(wǎng)絡(luò)中的高級持續(xù)性威脅問題,提出一種基于混合卷積神經(jīng)網(wǎng)絡(luò)( CNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)( RNN)的入侵檢測模型。該模型根據(jù)網(wǎng)絡(luò)數(shù)據(jù)流量的統(tǒng)計特征對當前網(wǎng)絡(luò)狀態(tài)進行分類。首先,獲取日志文件
2018-12-12 17:27:20
19 膠囊網(wǎng)絡(luò)是 Geoffrey Hinton 提出的一種新型神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),為了解決卷積神經(jīng)網(wǎng)絡(luò)(ConvNets)的一些缺點,提出了膠囊網(wǎng)絡(luò)。
2019-02-02 09:25:00
6526 麻省理工學(xué)院媒體實驗室的研究人員正在開發(fā)一種系統(tǒng),使幼兒能夠通過在貼紙上粘貼貼紙來編寫交互式機器人。
2019-01-16 13:41:17
3961 麻省理工學(xué)院28日發(fā)文稱,他們發(fā)明了一種新的2D材料,使用這種材料制造的新設(shè)備,可將WiFi信號轉(zhuǎn)換為可為設(shè)備供電的電力。
2019-02-19 14:09:57
1423 美國加州大學(xué)洛杉磯分校研發(fā)了一種光學(xué)神經(jīng)網(wǎng)絡(luò),可能可以生產(chǎn)出無需額外計算機處理就可立即識別物體的光學(xué)設(shè)備。
2020-04-15 17:13:04
2387 是否正確。麻省理工學(xué)院和哈佛大學(xué)的研究人員開發(fā)了一種快速的方法,讓神經(jīng)網(wǎng)絡(luò)在數(shù)據(jù)中提供預(yù)測資深對其答案的信心水平。
2020-11-24 14:58:41
1814 想要適應(yīng)自動駕駛、控制機器人、醫(yī)療診斷等場景,就必須讓神經(jīng)網(wǎng)絡(luò)適應(yīng)快速變化的各種狀況。好消息是,麻省理工(MIT)計算機科學(xué)與人工智能實驗室(CSAIL)的 Ramin Hasani 團隊,已經(jīng)
2021-01-29 11:32:32
2931 為提升網(wǎng)絡(luò)結(jié)構(gòu)的尋優(yōu)能力,提岀一種改進的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索方法。針對網(wǎng)絡(luò)結(jié)構(gòu)間距難以度量的問題,結(jié)合神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)搜索方案,設(shè)計基于圖的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)間距度量方式。對少量步數(shù)訓(xùn)練和充分訓(xùn)練2種
2021-03-16 14:05:46
3 動態(tài)推薦系統(tǒng)通過學(xué)習(xí)動態(tài)變化的興趣特征來考慮推薦系統(tǒng)中的動態(tài)因素,實現(xiàn)推薦任務(wù)隨著時間變化而實時更新。該文提出一種攜帶歷史元素的循環(huán)神經(jīng)網(wǎng)絡(luò)( ecurrent Neural Net works
2021-03-31 09:31:51
5 在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識。就目前而言,神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實都是神經(jīng)網(wǎng)絡(luò)。
2023-02-23 09:14:44
4833 神經(jīng)網(wǎng)絡(luò)(MLP),卷積神經(jīng)網(wǎng)絡(luò)(CNN)和遞歸神經(jīng)網(wǎng)絡(luò)(RNN)。 2、什么是深度神經(jīng)網(wǎng)絡(luò) 機器學(xué)習(xí)是一門多領(lǐng)域交叉學(xué)科,專門研究計算機怎樣模擬或?qū)崿F(xiàn)人類的學(xué)習(xí)行為,以獲取新的知識或技能,重新組織已有的知識結(jié)構(gòu)使之不斷改善自身的性能。它是人工
2023-05-15 14:20:01
1616 
(MLP),卷積神經(jīng)網(wǎng)絡(luò)(CNN)和遞歸神經(jīng)網(wǎng)絡(luò)(RNN)。2、什么是深度神經(jīng)網(wǎng)絡(luò)機器學(xué)習(xí)是一門多領(lǐng)域交叉學(xué)科,專門研究計算機怎樣模擬或?qū)崿F(xiàn)人類的學(xué)習(xí)行為,以獲取
2023-05-17 09:59:19
4321 
麻省理工學(xué)院的研究人員利用被廣泛研究的新型太陽能光伏材料,證明了這些材料的納米顆??梢园l(fā)射出一束相同的單光子。研究人員說,雖然這項工作目前是對這些材料能力的根本性發(fā)現(xiàn),但它最終可能為新的光學(xué)量子
2023-08-08 06:51:24
1118 
卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之一
2023-08-17 16:30:30
2216 的深度學(xué)習(xí)算法。CNN模型最早被提出是為了處理圖像,其模型結(jié)構(gòu)中包含卷積層、池化層和全連接層等關(guān)鍵技術(shù),經(jīng)過多個卷積層和池化層的處理,CNN可以提取出圖像中的特征信息,從而對圖像進行分類。 一、卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)算法最早起源于圖像處理領(lǐng)域。它是一種深
2023-08-21 16:49:46
2801 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),主要用于圖像和視頻的識別、分類和預(yù)測,是計算機視覺領(lǐng)域中應(yīng)用最廣泛的深度學(xué)習(xí)算法之一。該網(wǎng)絡(luò)模型可以自動從原始數(shù)據(jù)中學(xué)習(xí)有用的特征,并將其映射到相應(yīng)的類別。
2023-08-21 17:03:46
3199 深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機器學(xué)習(xí)算法,其主要特點是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動調(diào)整神經(jīng)元之間的權(quán)重,從而實現(xiàn)對大規(guī)模數(shù)據(jù)進行預(yù)測和分類。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:36
5026 水下傳感器網(wǎng)絡(luò)對于監(jiān)測漁場、颶風預(yù)報和探測敵方潛艇等各種應(yīng)用來說都是非常寶貴的。然而,通過液體傳輸數(shù)據(jù)比通過空氣傳輸要困難得多。麻省理工學(xué)院的工程師們提出了一種解決方案,可以實現(xiàn)遠程低功耗的水下通信
2023-09-20 10:23:02
2007 深度神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)的一種框架,它是一種具備至少一個隱層的神經(jīng)網(wǎng)絡(luò)。與淺層神經(jīng)網(wǎng)絡(luò)類似
2023-10-11 09:14:33
1896 
深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks,DNNs)是一類具有多個隱藏層的神經(jīng)網(wǎng)絡(luò),它們在許多領(lǐng)域取得了顯著的成功,如計算機視覺、自然語言處理、語音識別等。以下是一些常見的深度神經(jīng)網(wǎng)絡(luò)
2024-07-02 10:00:01
3226 不同的神經(jīng)網(wǎng)絡(luò)模型,它們在結(jié)構(gòu)、原理、應(yīng)用等方面都存在一定的差異。本文將從多個方面對這兩種神經(jīng)網(wǎng)絡(luò)進行詳細的比較和分析。 引言 神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)元連接和信息傳遞的計算模型,它具有強大的非線性擬合能力和泛
2024-07-02 14:24:03
7113 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、語音識別、自然語言處理等領(lǐng)域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡(luò)的原理,包括其
2024-07-02 14:44:08
1837 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡(luò)的基本概念、結(jié)構(gòu)
2024-07-03 09:15:28
1337 BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種常見的前饋神經(jīng)網(wǎng)絡(luò),它使用反向傳播算法來訓(xùn)練網(wǎng)絡(luò)。雖然BP神經(jīng)網(wǎng)絡(luò)在某些方面與深度神經(jīng)網(wǎng)絡(luò)(Deep Neural
2024-07-03 10:14:30
1801 屬于。BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種基于誤差反向傳播算法的多層前饋神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)(Deep Learning)領(lǐng)域中非常重要的一種模型。而
2024-07-03 10:18:09
1799 反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network,簡稱BP神經(jīng)網(wǎng)絡(luò))是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法來調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,以達到最小化誤差的目的。BP
2024-07-03 11:00:20
1742 人工智能神經(jīng)網(wǎng)絡(luò)系統(tǒng)是一種模擬人腦神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和功能的計算模型,具有高度的自適應(yīng)性、學(xué)習(xí)能力和泛化能力。本文將介紹人工智能神經(jīng)網(wǎng)絡(luò)系統(tǒng)的特點,包括其基本結(jié)構(gòu)、工作原理、主要類型、學(xué)習(xí)算法、應(yīng)用領(lǐng)域等
2024-07-04 09:42:36
1286 在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指傳統(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時,我們需要從多個維度進行深入分析。這些維度包括網(wǎng)絡(luò)結(jié)構(gòu)、訓(xùn)練機制、特征學(xué)習(xí)能力、應(yīng)用領(lǐng)域以及計算資源需求等方面。以下是對兩者區(qū)別的詳細闡述。
2024-07-04 13:20:36
2554 結(jié)構(gòu)。它們在處理不同類型的數(shù)據(jù)和解決不同問題時具有各自的優(yōu)勢和特點。本文將從多個方面比較循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別。 基本概念 循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有循環(huán)連接的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它可以處理序列數(shù)據(jù),如時間序列、文本、音頻等。RNN的核心思想是將前一個時間步的輸出作為下一個時間步的輸入,從而實
2024-07-04 14:24:51
2766 深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)作為機器學(xué)習(xí)的一種復(fù)雜形式,是廣義人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks, ANNs)的重要分支。它們
2024-07-04 16:08:16
3803 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)而產(chǎn)生的數(shù)學(xué)模型,用于模擬人腦處理信息的方式。它由大量的節(jié)點(或稱為神經(jīng)元)相互連接而成
2024-07-04 16:57:43
2435 詳細介紹人工神經(jīng)網(wǎng)絡(luò)的分類,包括前饋神經(jīng)網(wǎng)絡(luò)、卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)、深度神經(jīng)網(wǎng)絡(luò)、生成對抗網(wǎng)絡(luò)等。 一、前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks) 定義與結(jié)構(gòu) 前饋神經(jīng)網(wǎng)絡(luò)是一種最基本的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它由輸入層、多個隱藏層和輸出層組成。數(shù)據(jù)從輸入層經(jīng)過
2024-07-05 09:13:55
3436 RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)神經(jīng)網(wǎng)絡(luò)的介紹
2024-07-05 09:52:36
1514 機器人神經(jīng)網(wǎng)絡(luò)系統(tǒng)是一種模擬人類大腦神經(jīng)網(wǎng)絡(luò)的計算模型,具有高度的復(fù)雜性和靈活性。在本文中,我們將詳細介紹機器人神經(jīng)網(wǎng)絡(luò)系統(tǒng)的特點,包括其結(jié)構(gòu)、功能、優(yōu)勢和應(yīng)用等方面。 一、引言 神經(jīng)網(wǎng)絡(luò)是一種受人
2024-07-09 09:45:47
1409 深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)作為機器學(xué)習(xí)領(lǐng)域中的一種重要技術(shù),特別是在深度學(xué)習(xí)領(lǐng)域,已經(jīng)取得了顯著的成就。它們通過模擬人類大腦的處理方式,利用多層神經(jīng)元結(jié)構(gòu)
2024-07-10 18:23:31
2814 殘差網(wǎng)絡(luò)(Residual Network,通常簡稱為ResNet) 是深度神經(jīng)網(wǎng)絡(luò)的一種 ,其獨特的結(jié)構(gòu)設(shè)計在解決深層網(wǎng)絡(luò)訓(xùn)練中的梯度消失和梯度爆炸問題上取得了顯著的突破,并因此成為圖像處理、語音識別等多個領(lǐng)域的重要模型。以下是對殘差網(wǎng)絡(luò)作為深度神經(jīng)網(wǎng)絡(luò)的詳細闡述。
2024-07-11 18:13:43
2112 ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)的定義與發(fā)展 深度學(xué)習(xí)是機器學(xué)習(xí)的一個子集,指的是那些包含多個處理層的復(fù)雜網(wǎng)絡(luò)模
2025-02-12 15:15:21
1519
評論