chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-17 16:30 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之一。其主要應(yīng)用領(lǐng)域在計算機視覺和自然語言處理中,最初是由Yann LeCun等人在20世紀80年代末和90年代初提出的。隨著近年來計算機硬件性能的提升和深度學(xué)習(xí)技術(shù)的發(fā)展,CNN在很多領(lǐng)域取得了重大的進展和應(yīng)用。

一、卷積神經(jīng)網(wǎng)絡(luò)模型

(一)卷積層(Convolutional Layer)

卷積神經(jīng)網(wǎng)絡(luò)最主要的特點是卷積層。卷積層是CNN的核心組成部分,主要用于提取圖像等數(shù)據(jù)中的特征。卷積層可以看做是對原始數(shù)據(jù)進行的一次卷積操作,將數(shù)據(jù)中的每一個像素點與卷積核進行卷積運算,從而得到一個新的特征圖。具體而言,卷積層通過不斷的卷積操作,可以提取出圖像中的顏色、紋理、邊緣等特征,從而實現(xiàn)對圖像進行識別和分類的功能。

(二)池化層(Pooling Layer)

池化層也是CNN的重要組成部分。池化層主要作用是對特征圖進行降維操作,從而減少模型的參數(shù)數(shù)量和計算的復(fù)雜度。池化層通常使用最大池化或平均池化的方法,對每個特征圖上的一定區(qū)域進行池化操作,從而得到一個新的特征圖。池化層主要用于提取特征圖的主要特征,并減少特征圖中的噪聲。

(三)全連接層(Fully Connected Layer)

全連接層是CNN的最后一層,它的主要作用是將特征圖轉(zhuǎn)化為目標(biāo)類別的概率輸出。全連接層主要通過多層感知機(Multilayer Perceptron,MLP)實現(xiàn),通過將特征圖進行拉平操作,得到一個一維向量,然后通過多層神經(jīng)網(wǎng)絡(luò)的計算,將其轉(zhuǎn)化為目標(biāo)類別的概率輸出。

二、卷積神經(jīng)網(wǎng)絡(luò)算法

(一)前向傳播算法

前向傳播算法是卷積神經(jīng)網(wǎng)絡(luò)中最基本的算法之一,主要用于實現(xiàn)從輸入層到輸出層的計算過程。具體而言,前向傳播算法首先將輸入數(shù)據(jù)通過卷積層進行卷積操作,然后將卷積結(jié)果通過池化層進行降維操作,最后將池化結(jié)果通過全連接層進行多層神經(jīng)網(wǎng)絡(luò)計算,從而得到目標(biāo)類別的概率輸出。

(二)反向傳播算法

反向傳播算法是卷積神經(jīng)網(wǎng)絡(luò)中最重要的算法之一,主要用于實現(xiàn)誤差的反向傳播和模型參數(shù)的更新。具體而言,反向傳播算法通過計算誤差梯度,將誤差從輸出層逐層反向傳播,最終實現(xiàn)對模型參數(shù)的更新。

(三)優(yōu)化算法

優(yōu)化算法主要用于實現(xiàn)模型參數(shù)的優(yōu)化和更新。常用的優(yōu)化算法有隨機梯度下降(Stochastic Gradient Descent,SGD)、Adam、Adagrad等。

三、卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點

卷積神經(jīng)網(wǎng)絡(luò)具有很多優(yōu)點,主要表現(xiàn)在以下方面:

(一)提取特征更精準(zhǔn):CNN通過卷積層實現(xiàn)特征的自動提取和學(xué)習(xí),不需要手動特征工程,相比傳統(tǒng)機器學(xué)習(xí)模型更具優(yōu)勢。

(二)泛化能力更強:CNN具有很強的泛化能力,可以在不同數(shù)據(jù)集上獲得較好的準(zhǔn)確率。

(三)實現(xiàn)速度快:CNN通過卷積核的特殊設(shè)計,可以高效地對圖像進行計算,實現(xiàn)速度快。

(四)可處理大規(guī)模數(shù)據(jù):CNN可以處理大規(guī)模圖像數(shù)據(jù),能夠滿足很多實際應(yīng)用場景的需要。

卷積神經(jīng)網(wǎng)絡(luò)的缺點主要表現(xiàn)在以下方面:

(一)參數(shù)數(shù)量較大:CNN的模型參數(shù)數(shù)量較大,需要更多的計算資源和時間。

(二)泛化能力依賴數(shù)據(jù):CNN的泛化能力較強,但其依賴數(shù)據(jù)的質(zhì)量和數(shù)量,需要大量的樣本數(shù)據(jù)進行訓(xùn)練。

(三)模型復(fù)雜度高:CNN模型結(jié)構(gòu)比較復(fù)雜,難以理解和調(diào)試。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    自動駕駛中常提的卷積神經(jīng)網(wǎng)絡(luò)是個啥?

    在自動駕駛領(lǐng)域,經(jīng)常會聽到卷積神經(jīng)網(wǎng)絡(luò)技術(shù)。卷積神經(jīng)網(wǎng)絡(luò),簡稱為CNN,是一種專門用來處理網(wǎng)格狀數(shù)據(jù)(比如圖像)的深度學(xué)習(xí)模型。CNN在圖像
    的頭像 發(fā)表于 11-19 18:15 ?1989次閱讀
    自動駕駛中常提的<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>是個啥?

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計原理及在MCU200T上仿真測試

    CNN算法簡介 我們硬件加速器的模型為Lenet-5的變型,網(wǎng)絡(luò)粗略分共有7層,細分共有13層。包括卷積,最大池化層,激活層,扁平層,全連接層。下面是各層作用介紹:
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    :   神經(jīng)網(wǎng)絡(luò)卷積函數(shù)   神經(jīng)網(wǎng)絡(luò)激活函數(shù)   全連接層函數(shù)   神經(jīng)網(wǎng)絡(luò)池化函數(shù)   Softmax 函數(shù)   神經(jīng)網(wǎng)絡(luò)支持功能
    發(fā)表于 10-29 06:08

    構(gòu)建CNN網(wǎng)絡(luò)模型并優(yōu)化的一般化建議

    整個模型非常巨大。所以要想實現(xiàn)輕量級的CNN神經(jīng)網(wǎng)絡(luò)模型,首先應(yīng)該避免嘗試單層神經(jīng)網(wǎng)絡(luò)。 2)減少卷積核的大?。篊NN
    發(fā)表于 10-28 08:02

    卷積運算分析

    的數(shù)據(jù),故設(shè)計了ConvUnit模塊實現(xiàn)單個感受域規(guī)模的卷積運算. 卷積運算:不同于數(shù)學(xué)當(dāng)中提及到的卷積概念,CNN神經(jīng)網(wǎng)絡(luò)中的卷積嚴格意義
    發(fā)表于 10-28 07:31

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗

    , batch_size=512, epochs=20)總結(jié) 這個核心算法中的卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練過程,是用來對MNIST手寫數(shù)字圖像進行分類的。模型將圖像作為輸入,通過
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    讀取。接下來需要使用擴展指令,完成神經(jīng)網(wǎng)絡(luò)的部署,此處僅對第一層卷積+池化的部署進行說明,其余層與之類似。 1.使用 Custom_Dtrans 指令,將權(quán)重數(shù)據(jù)、輸入數(shù)據(jù)導(dǎo)入硬件加速器內(nèi)。對于權(quán)重
    發(fā)表于 10-20 08:00

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的
    的頭像 發(fā)表于 09-28 10:03 ?925次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)
    發(fā)表于 06-25 13:06

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?1542次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率

    訓(xùn)練過程中發(fā)生震蕩,甚至無法收斂到最優(yōu)解;而過小的學(xué)習(xí)率則會使模型收斂速度緩慢,容易陷入局部最優(yōu)解。因此,正確設(shè)置和調(diào)整學(xué)習(xí)率對于訓(xùn)練高效、準(zhǔn)確的神經(jīng)網(wǎng)絡(luò)模型至關(guān)重要。 二、學(xué)習(xí)率優(yōu)化算法
    的頭像 發(fā)表于 02-12 15:51 ?1584次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機器學(xué)習(xí)模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?1876次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播
    的頭像 發(fā)表于 02-12 15:18 ?1465次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?1604次閱讀