的網(wǎng)絡(luò)最終來實(shí)現(xiàn)更通用的識(shí)別。這些多層的優(yōu)點(diǎn)是各種抽象層次的學(xué)習(xí)特征。例如,若訓(xùn)練深度卷積神經(jīng)網(wǎng)絡(luò)(CNN)來對(duì)圖像進(jìn)行分類,則第一層學(xué)習(xí)識(shí)別邊緣等最基本的東西…
2022-11-11 07:55:50
嵌入式開發(fā)和平臺(tái)抽象;在TI硬件上實(shí)現(xiàn)用于加速CNN的高度優(yōu)化的內(nèi)核,以及支持從開放框架(如Caffe和TensorFlow)到使用TIDL應(yīng)用程序編程界面的嵌入式框架進(jìn)行網(wǎng)絡(luò)轉(zhuǎn)換的轉(zhuǎn)換器。有關(guān)此解決方案的更多詳細(xì)信息,請(qǐng)閱讀白皮書“TIDL:嵌入式低功耗深度學(xué)習(xí),” 并查看其它資源中的視頻。
2019-03-13 06:45:03
具有深度學(xué)習(xí)模型的嵌入式系統(tǒng)應(yīng)用程序帶來了巨大的好處。深度學(xué)習(xí)嵌入式系統(tǒng)已經(jīng)改變了各個(gè)行業(yè)的企業(yè)和組織。深度學(xué)習(xí)模型可以幫助實(shí)現(xiàn)工業(yè)流程自動(dòng)化,進(jìn)行實(shí)時(shí)分析以做出決策,甚至可以預(yù)測(cè)預(yù)警。這些AI
2021-10-27 06:34:15
內(nèi)容2:課程一: TensoRFlow入門到熟練:課程二:圖像分類:課程三:物體檢測(cè):課程四:人臉識(shí)別:課程五:算法實(shí)現(xiàn):1、卷積神經(jīng)網(wǎng)絡(luò)CNN2、循環(huán)神經(jīng)網(wǎng)絡(luò)RNN3、強(qiáng)化學(xué)習(xí)DRL4、對(duì)抗性生成
2021-01-10 13:42:26
Azure IoT 中心是一項(xiàng)完全托管的服務(wù),有助于在數(shù)百萬(wàn)臺(tái)設(shè)備和單個(gè)解決方案后端之間實(shí)現(xiàn)安全可靠的雙向通信。那么Azure IoT 怎么使用?
2021-04-02 07:49:51
快速的部署到TI嵌入式平臺(tái)。 TDA4擁有TI最新一代的深度學(xué)習(xí)加速模塊C7x DSP與MMA矩陣乘法加速器,可以運(yùn)行TIDL進(jìn)行卷積等基本計(jì)算,從而快速地進(jìn)行前向推理,得到計(jì)算結(jié)果。 當(dāng)深度學(xué)習(xí)遇上
2022-11-03 06:53:11
,深度學(xué)習(xí)技術(shù)經(jīng)常在多節(jié)點(diǎn)計(jì)算基礎(chǔ)架構(gòu)間進(jìn)行拓展。目前的解決方案使用具備Infiniband互連技術(shù)的GPU集群和MPI,從而實(shí)現(xiàn)上層的并行計(jì)算能力和節(jié)點(diǎn)間數(shù)據(jù)的快速傳輸。然而,當(dāng)大規(guī)模應(yīng)用的負(fù)載
2018-08-13 09:33:30
1 CNN簡(jiǎn)介
CNN即卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks),是一類包含卷積計(jì)算的神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)(deep learning)的代表算法之一,在圖像識(shí)別
2023-08-18 06:56:34
延遲,這對(duì)
深度學(xué)習(xí)推理也很有效。上述圖像識(shí)別的
深度學(xué)習(xí)有望應(yīng)用于自動(dòng)駕駛等對(duì)精度要求較高的系統(tǒng)中。然而,由于它也是一個(gè)具有嚴(yán)格延遲約束的系統(tǒng),因此可能難以通過 CPU 和 GPU
實(shí)現(xiàn),它們?nèi)菀资艿?/div>
2023-02-17 16:56:59
性能。 英特爾?OpenlandOpen?管理軟件包包括英特爾?深度學(xué)習(xí)部署工具包(英特爾?DLDT)。適用于Linux *的OpenVINO?工具包的英特爾?分發(fā)版:在邊緣啟用基于CNN的深度學(xué)習(xí)推理通過
2021-07-26 06:45:21
網(wǎng)絡(luò)智能診斷平臺(tái)。通過對(duì)私有化網(wǎng)絡(luò)數(shù)據(jù)的定向訓(xùn)練,信而泰打造了高性能、高可靠性的網(wǎng)絡(luò)診斷模型,顯著提升了AI輔助診斷的精準(zhǔn)度與實(shí)用性。該方案實(shí)現(xiàn)了網(wǎng)絡(luò)全流量深度解析能力與AI智能推理分析能力的有機(jī)融合
2025-07-16 15:29:20
【深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37
你好我使用 STM32CUBE-AI v5.1.2 ApplicationTemplate 將簡(jiǎn)單的 CNN 導(dǎo)入到 STM32L462RCT我發(fā)現(xiàn)壓縮模型對(duì)推理時(shí)間沒有影響。aiRun 程序在 8
2023-01-29 06:24:08
,接下來是密集全連接層。● 深度可分離卷積神經(jīng)網(wǎng)絡(luò) (DS-CNN)最近,深度可分離卷積神經(jīng)網(wǎng)絡(luò)被推薦為標(biāo)準(zhǔn) 3D 卷積運(yùn)算的高效替代方案,并已用于實(shí)現(xiàn)計(jì)算機(jī)視覺的緊湊網(wǎng)絡(luò)架構(gòu)。DS-CNN 首先使用獨(dú)立
2021-07-26 09:46:37
作者:Liran Bar,CEVA成像與視覺DSP核心產(chǎn)品線市場(chǎng)總監(jiān)機(jī)器學(xué)習(xí)正快速成為物聯(lián)網(wǎng)(IoT)設(shè)備不可分割的特征。家用電器開始裝備可以智能地回應(yīng)自然語(yǔ)音的語(yǔ)音驅(qū)動(dòng)接口。機(jī)器人開始通過智能手機(jī)相機(jī)上的演示視頻學(xué)習(xí)如何在工廠車間移動(dòng)材料并為其他機(jī)器編程……
2019-07-19 08:21:38
FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識(shí)別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對(duì)在 FPGA 上實(shí)現(xiàn) CNN 做一個(gè)可行性研究
2019-06-19 07:24:41
隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)大模型在各個(gè)領(lǐng)域得到了廣泛應(yīng)用。然而,大模型的推理過程對(duì)顯存和計(jì)算資源的需求較高,給實(shí)際應(yīng)用帶來了挑戰(zhàn)。為了解決這一問題,本文將探討大模型推理顯存和計(jì)算量的估計(jì)
2025-07-03 19:43:59
的 Edge TPU 扮演著關(guān)鍵角色——這款專用 ASIC 旨在將機(jī)器學(xué)習(xí)推理能力引入邊緣設(shè)備。在近一年之后,兩款產(chǎn)品以“Coral”的名號(hào)推出了“Beta 測(cè)試版”,且目前已經(jīng)可供感興趣的朋友購(gòu)買。另外,這
2019-03-05 21:20:23
基于嵌入式平臺(tái)與深度學(xué)習(xí)的智能氣象監(jiān)測(cè)儀器設(shè)計(jì)方案一、概述二、整體框架三、人工智能部分:四、嵌入式部分4.1安卓主控4.2協(xié)處理器五、人機(jī)交互一、概述以目前常見移動(dòng)設(shè)備的存儲(chǔ)和計(jì)算能力,是不可能實(shí)現(xiàn)
2021-11-09 09:14:46
單片機(jī)(Cortex-M內(nèi)核,無操作系統(tǒng))可以跑深度學(xué)習(xí)嗎? ——Read Air 2019.8.20Xu_CNN框架待處理:1.需要設(shè)計(jì)一個(gè)可讀寫的消息棧 ()2.函數(shù)的類型參數(shù)使用結(jié)構(gòu)體傳入 (已實(shí)現(xiàn))3.動(dòng)態(tài)...
2021-12-09 08:02:27
是人工智能大躍進(jìn)的基礎(chǔ),在線下模型訓(xùn)練中Xeon-Phi、GPU等發(fā)揮著巨大的作用,而在線上的推理任務(wù)中,浪潮FPGA深度學(xué)習(xí)加速解決方案則能夠實(shí)現(xiàn)7倍以上的能效比提升。 卷積網(wǎng)絡(luò)之父、Facebook
2021-09-17 17:08:32
、燒錄、下載至單片機(jī)后通過串口調(diào)試助手能夠實(shí)現(xiàn)配置連接WIFI加入網(wǎng)絡(luò),和遠(yuǎn)端服務(wù)器建立TCP聯(lián)系,但是云端設(shè)備始終處于未激活狀態(tài),查找了很多做IOT通信方面的例程,很多例程都是基于云的SDK...
2021-11-22 06:55:04
如何利用模塊化平臺(tái)去實(shí)現(xiàn)高能效IoT設(shè)備?
2021-05-19 07:07:35
頂頭狀態(tài)。
檢測(cè)頂頭算法
引入人工智深度學(xué)習(xí)技術(shù),通過Keras實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)(CNN),用Numpy實(shí)現(xiàn)采集數(shù)據(jù)的訓(xùn)練,得到符合現(xiàn)場(chǎng)需求的模型,進(jìn)一步提升檢測(cè)的準(zhǔn)確性和現(xiàn)場(chǎng)的適應(yīng)性。
應(yīng)用范圍
2025-12-22 14:33:50
紋理就能被更準(zhǔn)確地捕捉和分類?! ≡诨诩y理的分類任務(wù)重,紋理分析對(duì)于深度學(xué)習(xí)的重要性 由于紋理基于局部模式,而傳統(tǒng)的深度學(xué)習(xí)方法強(qiáng)調(diào)復(fù)雜的特征,對(duì)紋理分類沒有幫助,因此,傳統(tǒng)的CNN架構(gòu)不能很好
2022-10-26 16:57:26
IoT應(yīng)用。通過提供結(jié)合了靈活、超低功耗FPGA硬件和軟件解決方案、功能全面的機(jī)器學(xué)習(xí)推理技術(shù),Lattice sensAI將加速網(wǎng)絡(luò)邊緣設(shè)備上傳感器數(shù)據(jù)處理和分析的集成。這些新的網(wǎng)絡(luò)邊緣計(jì)算解決方案
2018-05-23 15:31:04
為幫助數(shù)據(jù)科學(xué)家和開發(fā)人員充分利用深度學(xué)習(xí)領(lǐng)域中的機(jī)遇,NVIDIA為其深度學(xué)習(xí)軟件平臺(tái)發(fā)布了三項(xiàng)重大更新,它們分別是NVIDIA DIGITS 4、CUDA深度神經(jīng)網(wǎng)絡(luò)庫(kù)(cuDNN)5.1和全新的GPU推理引擎(GIE)?! ?
NVIDIA深度學(xué)習(xí)軟件平臺(tái)推三項(xiàng)重大更新
2016-08-06 15:00:26
2307 ,可以直接將 C 語(yǔ)言綜合到硬件加速模塊。EagleGo HD 可以幫助客戶快速實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) CNN 相關(guān)設(shè)計(jì),代替嵌入式 GPU,實(shí)現(xiàn)低功耗的人工智能前端設(shè)備。 典型應(yīng)用:人臉識(shí)別,智能安防,汽車
2017-02-08 04:42:11
556 項(xiàng)目組基于深度學(xué)習(xí)實(shí)現(xiàn)了視頻風(fēng)格化和人像摳圖的功能,但這是在PC/服務(wù)端上跑的,現(xiàn)在需要移植到移動(dòng)端,因此需要一個(gè)移動(dòng)端的深度學(xué)習(xí)的計(jì)算框架。 同類型的庫(kù) caffe-Android-lib 目前
2017-09-28 20:02:26
0 深度學(xué)習(xí)的出現(xiàn)使得算法對(duì)圖像的語(yǔ)義級(jí)操作成為可能。本文即是介紹深度學(xué)習(xí)技術(shù)在圖像超清化問題上的最新研究進(jìn)展。 深度學(xué)習(xí)最早興起于圖像,其主要處理圖像的技術(shù)是卷積神經(jīng)網(wǎng)絡(luò),關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的起源,業(yè)界
2017-09-30 11:15:17
1 分享到 從最初星際迷航系列的開播之日起,人們就開始?jí)粝胫约阂材軗碛幸慌_(tái)袖珍型實(shí)時(shí)翻譯設(shè)備;一直以來,大家都渴望能夠“破譯”醫(yī)生的筆跡。 有賴于深度學(xué)習(xí)推理方面取得的進(jìn)步,作為中國(guó)最大AI科技公司
2018-02-20 22:49:00
982 幾乎所有深度學(xué)習(xí)的研究者都在使用GPU,但是對(duì)比深度學(xué)習(xí)硬鑒方案,ASIC、FPGA、GPU三種究竟哪款更被看好?主要是認(rèn)清對(duì)深度學(xué)習(xí)硬件平臺(tái)的要求。
2018-02-02 15:21:40
10933 
這篇論文對(duì)于使用深度學(xué)習(xí)來改進(jìn)IoT領(lǐng)域的數(shù)據(jù)分析和學(xué)習(xí)方法進(jìn)行了詳細(xì)的綜述。
2018-03-01 11:05:12
8194 
2010年1月9日,Deephi的Yi Shan在法蘭克福的2018年XDF的Edge Track中提供了一個(gè)用例演示.Yi Shan討論了深度學(xué)習(xí)的成功,并分享了他們的全棧深度學(xué)習(xí)推理解決方案的用例。
2018-11-21 06:16:00
2818 Zerotech Dobby AI是一款口袋大小的無人機(jī),它使用深度學(xué)習(xí)來檢測(cè)由Xilinx Zynq SoC器件驅(qū)動(dòng)的人體手勢(shì)。
該演示還將展示DeePhi的深度學(xué)習(xí)推理技術(shù)。
2018-11-26 06:21:00
3078 現(xiàn)在,深度學(xué)習(xí)面臨著無法進(jìn)行推理的困境,這也就意味著,它無法讓機(jī)器具備像人一樣的智能。但是真正的推理在機(jī)器中是什么樣子的呢?如果深度學(xué)習(xí)不能幫助我們達(dá)到目的,那什么可以呢?
2018-12-01 09:41:12
3629 深度卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種特殊類型的神經(jīng)網(wǎng)絡(luò),在各種競(jìng)賽基準(zhǔn)上表現(xiàn)出了當(dāng)前最優(yōu)結(jié)果。本綜述將最近的 CNN 架構(gòu)創(chuàng)新分為七個(gè)不同的類別,分別基于空間利用、深度、多路徑、寬度、特征圖利用、通道提升和注意力。
2019-01-27 11:01:13
4739 
神經(jīng)網(wǎng)絡(luò)(Graph NN)是近來的一大研究熱點(diǎn),尤其是DeepMind提出的“Graph Networks”,號(hào)稱有望讓深度學(xué)習(xí)實(shí)現(xiàn)因果推理。
2019-02-13 09:37:07
2864 在信號(hào)處理、圖像處理和其它工程/科學(xué)領(lǐng)域,卷積都是一種使用廣泛的技術(shù)。在深度學(xué)習(xí)領(lǐng)域,卷積神經(jīng)網(wǎng)絡(luò)(CNN)這種模型架構(gòu)就得名于這種技術(shù)。但是,深度學(xué)習(xí)領(lǐng)域的卷積本質(zhì)上是信號(hào)/圖像處理領(lǐng)域內(nèi)的互相關(guān)(cross-correlation)。這兩種操作之間存在細(xì)微的差別。
2019-02-26 10:01:05
3944 
在傳統(tǒng)的多智體學(xué)習(xí)過程當(dāng)中,有研究者在對(duì)其他智能體建模 (也即“對(duì)手建模”, opponent modeling) 時(shí)使用了遞歸推理,但由于算法復(fù)雜和計(jì)算力所限,目前還尚未有人在多智體深度強(qiáng)化學(xué)習(xí) (Multi-Agent Deep Reinforcement Learning) 的對(duì)手建模中使用遞歸推理。
2019-03-05 08:52:43
5713 對(duì)于深度學(xué)習(xí)本人也是半路出家. 現(xiàn)在的工作內(nèi)容主要就是使用CNN做CV任務(wù). 干調(diào)參這種活也有兩年時(shí)間了. 我的回答可能更多的還是側(cè)重工業(yè)應(yīng)用, 技術(shù)上只限制在CNN這塊.
2019-06-08 14:41:00
2669 訓(xùn)練 CNN 需要相當(dāng)大量的數(shù)據(jù),因?yàn)閷?duì)于典型的圖像分類問題,其需要學(xué)習(xí)幾百萬(wàn)個(gè)權(quán)值。從頭開始訓(xùn)練 CNN 的另一個(gè)常見做法是使用預(yù)先訓(xùn)練好的模型自動(dòng)從新的數(shù)據(jù)集提取特征。這種方法稱為遷移學(xué)習(xí),是一種應(yīng)用深度學(xué)習(xí)的便捷方式,其無需龐大的數(shù)據(jù)集以及長(zhǎng)時(shí)間的訓(xùn)練。
2019-09-16 15:11:20
6344 
深度學(xué)習(xí)技術(shù)成為機(jī)器視覺的熱門話題之一。深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)領(lǐng)域,它使計(jì)算機(jī)能夠通過卷積神經(jīng)網(wǎng)絡(luò)(CNN)等體系結(jié)構(gòu)進(jìn)行訓(xùn)練和學(xué)習(xí)。
2019-08-23 17:02:03
1136 機(jī)器學(xué)習(xí)正快速成為物聯(lián)網(wǎng)(IoT)設(shè)備不可分割的特征。
2019-09-09 11:41:51
1751 隨后,以傳統(tǒng)機(jī)器閱讀的方法作為引入,引出了深度學(xué)習(xí)的方法。先介紹了機(jī)器閱讀的主要步驟:文本表示(將文本表示成機(jī)器能理解的符號(hào))→ 語(yǔ)義匹配(尋找問題和原文句子的語(yǔ)義關(guān)聯(lián)) → 理解推理(對(duì)語(yǔ)義關(guān)聯(lián)進(jìn)行加工和推理) → 結(jié)果推薦(對(duì)候選答案進(jìn)行排序和輸出)。
2019-09-20 16:01:16
3820 學(xué)習(xí)?!?在這 5 堂課中,學(xué)生將可以學(xué)習(xí)到深度學(xué)習(xí)的基礎(chǔ),學(xué)會(huì)構(gòu)建神經(jīng)網(wǎng)絡(luò),并用在包括吳恩達(dá)本人在內(nèi)的多位業(yè)界頂尖專家指導(dǎo)下創(chuàng)建自己的機(jī)器學(xué)習(xí)項(xiàng)目。Deep Learning Specialization 對(duì)卷積神經(jīng)網(wǎng)絡(luò) (CNN)、遞歸神經(jīng)網(wǎng)絡(luò) (RNN)、長(zhǎng)短期
2020-09-01 08:00:00
5 傳統(tǒng)的視覺算法受打光以及圖像的邊緣對(duì)比度影響,無法做到人眼的分辨效果,而且人具有學(xué)習(xí)能力,經(jīng)過大量樣本的學(xué)習(xí),人就可以找到不同物體之間的細(xì)微差別,從而分辨出物體的類別。CNN就是模擬人的大腦神經(jīng)元結(jié)構(gòu),用計(jì)算機(jī)構(gòu)造的簡(jiǎn)化了的人腦神經(jīng)網(wǎng)絡(luò)模型,其主要用于圖像分類和識(shí)別。
2020-09-08 14:23:33
10658 
MCUNet能夠把深度學(xué)習(xí)在單片機(jī)上做到 ImageNet 70% 以上的準(zhǔn)確率,我們的研究表明,在物聯(lián)網(wǎng)設(shè)備上在線進(jìn)行小資源機(jī)器學(xué)習(xí)的時(shí)代正在到來。 近日,MIT 電子工程和計(jì)算機(jī)科學(xué)系助理教授
2020-12-04 14:37:06
2399 概述 深度學(xué)習(xí)中CNN網(wǎng)絡(luò)是核心,對(duì)CNN網(wǎng)絡(luò)來說卷積層與池化層的計(jì)算至關(guān)重要,不同的步長(zhǎng)、填充方式、卷積核大小、
2021-04-06 15:13:25
3356 
卷積神經(jīng)網(wǎng)絡(luò)( Convolutional Neural Network,CNN)作為深度學(xué)習(xí)的重要技術(shù),已被廣泛應(yīng)用在移動(dòng)智能應(yīng)用中。針對(duì)CNN推斷任務(wù)高內(nèi)存、高計(jì)算量的需求,現(xiàn)有解決方案多將任務(wù)
2021-05-10 14:06:36
2 連接層,使得網(wǎng)絡(luò)結(jié)構(gòu)簡(jiǎn)單且可移植性強(qiáng)。在改進(jìn)CNN網(wǎng)絡(luò)的基礎(chǔ)上,利用基于投票法的集成學(xué)習(xí)策略將所有個(gè)體學(xué)習(xí)器結(jié)果凸組合為最終結(jié)果,實(shí)現(xiàn)更準(zhǔn)確的人臉識(shí)別。實(shí)驗(yàn)結(jié)果表明,該算法在 Color Feret、AR和ORL人臉數(shù)據(jù)庫(kù)上的識(shí)別準(zhǔn)確率分別達(dá)到
2021-05-27 14:36:12
6 基于CNN分類回歸聯(lián)合學(xué)習(xí)等的左心室檢測(cè)方法
2021-06-25 11:15:02
33 單片機(jī)(Cortex-M內(nèi)核,無操作系統(tǒng))可以跑深度學(xué)習(xí)嗎? ——Read Air 2019.8.20Xu_CNN框架
2021-11-26 09:51:05
11 IOS論文出自MIT的韓松實(shí)驗(yàn)室,第一作者為Yaoyao Ding, 這是他在韓松實(shí)驗(yàn)室實(shí)習(xí)時(shí)的成果?,F(xiàn)有的CNN推理加速技術(shù)關(guān)注于優(yōu)化算子內(nèi)部的并...
2022-01-25 18:09:36
0 在這篇文章中,我們解釋了如何使用 TensorFlow-to-ONNX-to-TensorRT 工作流來部署深度學(xué)習(xí)應(yīng)用程序,并給出了幾個(gè)示例。第一個(gè)例子是 ResNet-50 上的 ONNX-
2022-04-01 15:45:04
3593 
LeNet 卷積神經(jīng)網(wǎng)絡(luò)是由深度學(xué)習(xí)三巨頭之一的 Yan Le Cun于 1994 年提出來的。其對(duì)構(gòu)建的 MNIST手寫字符數(shù)據(jù)集進(jìn)行分類。LeNet 的提出確立了 CNN 的基本網(wǎng)絡(luò)架構(gòu)。
2022-07-05 11:50:09
2994 綜上所述,這個(gè)新版本的 OpenVINO 工具包提供了許多好處,不僅優(yōu)化了用戶部署應(yīng)用程序的體驗(yàn),還增強(qiáng)了性能參數(shù)。它使用戶能夠開發(fā)具有易于部署、更多深度學(xué)習(xí)模型、更多設(shè)備可移植性和更高推理性能且代碼更改更少的應(yīng)用程序。
2022-07-12 10:08:57
1716 深度學(xué)習(xí)主要包含卷積神經(jīng)網(wǎng)絡(luò)和Faster R-CNN兩種網(wǎng)絡(luò)模型,通過利用算法模型自動(dòng)學(xué)習(xí)的特點(diǎn),不再受限于復(fù)雜多變的環(huán)境,可自動(dòng)提取缺陷特征,最終實(shí)現(xiàn)自動(dòng)檢測(cè)。
2022-10-19 15:08:48
3766 電子發(fā)燒友網(wǎng)站提供《基于AdderNet的深度學(xué)習(xí)推理加速器.zip》資料免費(fèi)下載
2022-10-31 11:12:28
0 R-CNN 算法在 2014 年提出,可以說是歷史性的算法,將深度學(xué)習(xí)應(yīng)用于目標(biāo)檢測(cè)領(lǐng)域,相較于之前的目標(biāo)檢測(cè)方法,提升多達(dá) 30% 以上
2022-10-31 10:08:05
2662 人工智能迎來第三次浪潮后,以深度學(xué)習(xí)為代表的AI已經(jīng)進(jìn)入應(yīng)用階段。而深度學(xué)習(xí) AI 需要進(jìn)行大量矩陣乘法以訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,并利用推理將這些模型應(yīng)用于實(shí)際任務(wù)。
2022-12-15 10:51:11
1212 深度學(xué)習(xí)可以學(xué)習(xí)視覺輸入的模式,以預(yù)測(cè)組成圖像的對(duì)象類。用于圖像處理的主要深度學(xué)習(xí)架構(gòu)是卷積神經(jīng)網(wǎng)絡(luò)(CNN),或者是特定的CNN框架,如AlexNet、VGG、Inception和ResNet。計(jì)算機(jī)視覺的深度學(xué)習(xí)模型通常在專門的圖形處理單元(GPU)上訓(xùn)練和執(zhí)行,以減少計(jì)算時(shí)間。
2023-05-05 11:35:28
2022 PyTorch是由Facebook人工智能研究小組開發(fā)的一種基于Lua編寫的Torch庫(kù)的Python實(shí)現(xiàn)的深度學(xué)習(xí)庫(kù),也是目前使用范圍和體驗(yàn)感最好的一款深度學(xué)習(xí)框架。
2023-05-08 14:20:58
1832 
因?yàn)?b class="flag-6" style="color: red">CNN的特有計(jì)算模式,通用處理器對(duì)于CNN實(shí)現(xiàn)效率并不高,不能滿足性能要求。 因此,近來已經(jīng)提出了基于FPGA,GPU甚至ASIC設(shè)計(jì)的各種加速器來提高CNN設(shè)計(jì)的性能。
2023-06-14 16:03:43
3135 
深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)的區(qū)別在于隱藏層的深度。一般來說,神經(jīng)網(wǎng)絡(luò)的隱藏層要比實(shí)現(xiàn)深度學(xué)習(xí)的系統(tǒng)淺得多,而深度學(xué)習(xí)的在隱藏層可以有很多層。
2023-07-28 10:44:27
981 
深度學(xué)習(xí)框架區(qū)分訓(xùn)練還是推理嗎 深度學(xué)習(xí)框架是一個(gè)非常重要的技術(shù),它們能夠加速深度學(xué)習(xí)的開發(fā)與部署過程。在深度學(xué)習(xí)中,我們通常需要進(jìn)行兩個(gè)關(guān)鍵的任務(wù),即訓(xùn)練和推理。訓(xùn)練是指使用訓(xùn)練數(shù)據(jù)訓(xùn)練神經(jīng)網(wǎng)絡(luò)
2023-08-17 16:03:11
2217 cnn卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是目前深度學(xué)習(xí)領(lǐng)域中應(yīng)用廣泛的一種神經(jīng)網(wǎng)絡(luò)模型。CNN的出現(xiàn)
2023-08-21 17:16:13
3817 的語(yǔ)音合成技術(shù)的現(xiàn)狀 基于深度學(xué)習(xí)的語(yǔ)音合成技術(shù)以其強(qiáng)大的表示能力和學(xué)習(xí)能力,在語(yǔ)音合成領(lǐng)域取得了突破性的進(jìn)展。深度學(xué)習(xí)模型如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)、卷積神經(jīng)網(wǎng)絡(luò)(CNN)和長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)等被廣泛應(yīng)用于語(yǔ)音合
2023-09-16 14:48:21
2114 卷積神經(jīng)網(wǎng)絡(luò)(CNN 或 ConvNet)是一種直接從數(shù)據(jù)中學(xué)習(xí)的深度學(xué)習(xí)網(wǎng)絡(luò)架構(gòu)。
CNN 特別適合在圖像中尋找模式以識(shí)別對(duì)象、類和類別。它們也能很好地對(duì)音頻、時(shí)間序列和信號(hào)數(shù)據(jù)進(jìn)行分類。
2023-10-12 12:41:49
2398 
深度學(xué)習(xí)簡(jiǎn)介深度學(xué)習(xí)是人工智能(AI)的一個(gè)分支,它教神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)和推理。近年來,它解決復(fù)雜問題并在各個(gè)領(lǐng)域提供尖端性能的能力引起了極大的興趣和吸引力。深度學(xué)習(xí)算法通過允許機(jī)器處理和理解大量數(shù)據(jù)
2023-12-01 08:27:44
5867 
卷積神經(jīng)網(wǎng)絡(luò) (CNN) 由各種類型的層組成,這些層協(xié)同工作以從輸入數(shù)據(jù)中學(xué)習(xí)分層表示。每個(gè)層在整體架構(gòu)中都發(fā)揮著獨(dú)特的作用。
2024-04-06 05:51:00
3594 
,其核心是構(gòu)建具有多層結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò)模型,以實(shí)現(xiàn)對(duì)復(fù)雜數(shù)據(jù)的高效表示和處理。在眾多深度學(xué)習(xí)模型中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)因其在圖像識(shí)別等領(lǐng)域的卓越性能而備受關(guān)注。CNN通過引入卷積層和池化層,有效地捕捉了圖像的局部特征和空間結(jié)構(gòu)信息,從而在圖像分類、目標(biāo)檢
2024-07-02 10:11:59
12242 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語(yǔ)言處理等領(lǐng)域。 CNN的基本概念 1.1 卷積層
2024-07-02 15:24:42
1732 隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)作為其中的重要分支,已經(jīng)在多個(gè)領(lǐng)域取得了顯著的應(yīng)用成果。從圖像識(shí)別、語(yǔ)音識(shí)別
2024-07-02 18:19:17
1852 卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,由多層卷積層和池化層堆疊而成。CNN通過卷積操作提取圖像特征,并通過池化操作降低特征維度,從而實(shí)現(xiàn)對(duì)圖像的分類、檢測(cè)和分割等任務(wù)。 1.2 卷積神經(jīng)網(wǎng)絡(luò)
2024-07-03 09:28:41
2079 卷積神經(jīng)網(wǎng)絡(luò)(CNN)是深度學(xué)習(xí)領(lǐng)域中一種特別適用于圖像識(shí)別任務(wù)的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。它通過模擬人類視覺系統(tǒng)的處理方式,利用卷積、池化等操作,自動(dòng)提取圖像中的特征,進(jìn)而實(shí)現(xiàn)高效的圖像識(shí)別。本文將從CNN的基本原理、構(gòu)建過程、訓(xùn)練策略以及應(yīng)用場(chǎng)景等方面,詳細(xì)闡述如何利用CNN實(shí)現(xiàn)圖像識(shí)別。
2024-07-03 16:16:16
3458 在計(jì)算機(jī)視覺領(lǐng)域,目標(biāo)檢測(cè)一直是研究的熱點(diǎn)和難點(diǎn)之一。特別是在小目標(biāo)檢測(cè)方面,由于小目標(biāo)在圖像中所占比例小、特征不明顯,使得檢測(cè)難度顯著增加。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,尤其是卷積神經(jīng)網(wǎng)絡(luò)(CNN
2024-07-04 17:25:28
2655 深度學(xué)習(xí)模型量化是一種重要的模型輕量化技術(shù),旨在通過減少網(wǎng)絡(luò)參數(shù)的比特寬度來減小模型大小和加速推理過程,同時(shí)盡量保持模型性能。從而達(dá)到把模型部署到邊緣或者低算力設(shè)備上,實(shí)現(xiàn)降本增效的目標(biāo)。
2024-07-15 11:01:56
1728 
深度學(xué)習(xí)編譯器和推理引擎在人工智能領(lǐng)域中都扮演著至關(guān)重要的角色,但它們各自的功能、應(yīng)用場(chǎng)景以及優(yōu)化目標(biāo)等方面存在顯著的差異。以下是對(duì)兩者區(qū)別的詳細(xì)探討。
2024-07-17 18:12:05
2174 :CNN是深度學(xué)習(xí)中處理圖像和視頻等具有網(wǎng)格結(jié)構(gòu)數(shù)據(jù)的主要算法。它通過卷積層、池化層和全連接層等組件,實(shí)現(xiàn)對(duì)圖像特征的自動(dòng)提取和識(shí)別。 應(yīng)用領(lǐng)域 :CNN在圖像識(shí)別、目標(biāo)檢測(cè)、視頻分析、人臉識(shí)別等領(lǐng)域取得了巨大成功,被廣泛應(yīng)用于
2024-09-10 15:28:42
1257 人類的學(xué)習(xí)過程,實(shí)現(xiàn)對(duì)復(fù)雜數(shù)據(jù)的學(xué)習(xí)和識(shí)別。AI大模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計(jì)算資源來進(jìn)行訓(xùn)練和推理。深度學(xué)習(xí)算法為AI大模型提供了核心的技術(shù)支撐,使得大模型能夠更好地?cái)M合數(shù)據(jù),提高模型的準(zhǔn)確性和泛化能力。 模型
2024-10-23 15:25:50
3785 能力,可以顯著提高圖像識(shí)別模型的訓(xùn)練速度和準(zhǔn)確性。例如,在人臉識(shí)別、自動(dòng)駕駛等領(lǐng)域,GPU被廣泛應(yīng)用于加速深度學(xué)習(xí)模型的訓(xùn)練和推理過程。 二、自然語(yǔ)言處理 自然語(yǔ)言處理(NLP)是深度學(xué)習(xí)的另一個(gè)重要應(yīng)用領(lǐng)域。GPU可以加速NLP模型的訓(xùn)練,提
2024-10-27 11:13:45
2283 近日,智譜公司宣布其深度推理模型GLM-Zero的初代版本——GLM-Zero-Preview已正式上線。這款模型是智譜首個(gè)基于擴(kuò)展強(qiáng)化學(xué)習(xí)技術(shù)訓(xùn)練的推理模型,標(biāo)志著智譜在AI推理領(lǐng)域邁出了重要一步
2025-01-02 10:55:44
875
評(píng)論