chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>通信網(wǎng)絡(luò)>光通信>如何讓微波光子與光學(xué)光子相互作用

如何讓微波光子與光學(xué)光子相互作用

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

微波光子雷達(dá)最新研究進(jìn)展

微波光子學(xué)技術(shù)的發(fā)展及其在雷達(dá)上的應(yīng)用是雷達(dá)領(lǐng)域的一項(xiàng)潛在顛覆性技術(shù),是新一代多功能、軟件化雷達(dá)的重要技術(shù)支撐。微波光子雷達(dá)作為雷達(dá)發(fā)展的新形態(tài),能有效克服傳統(tǒng)電子器件的技術(shù)瓶頸,改善和提高傳統(tǒng)雷達(dá)多項(xiàng)技術(shù)性能,為雷達(dá)等電子裝備技術(shù)與形態(tài)帶來(lái)變革。
2016-12-26 15:08:525491

基于新型電響應(yīng)光子晶體材料的顯示設(shè)計(jì)方案

如何進(jìn)一步提高芯片的性能呢?這時(shí),人們想到了光子。光子不帶電,光子之間沒(méi)有相互作用??刂?b class="flag-6" style="color: red">光子比控制電子更簡(jiǎn)單。
2023-03-09 10:54:071471

微波光子技術(shù)為雷達(dá)帶來(lái)新變革

微波光子學(xué)最早的系統(tǒng)層應(yīng)用是70年代末美國(guó)莫哈韋沙漠中的“深空網(wǎng)絡(luò)”,它由分布在數(shù)十公里內(nèi)的十多個(gè)大型碟形天線組成,這些天線借助光纖傳遞1.42 GHz超穩(wěn)定參考信號(hào),并利用相控陣原理像一個(gè)巨大的天線一樣工作,從而與太空的空間飛船保持通信和跟蹤。
2016-12-19 10:06:494033

光子器件與電子器件的性能有哪些不同

光子學(xué)是什么?納米光子學(xué)又是什么?光子器件與電子器件的性能有哪些不同?
2021-08-31 06:37:56

光子學(xué)技術(shù)在汽車(chē)應(yīng)用中有什么優(yōu)勢(shì)?

光子學(xué)技術(shù)在汽車(chē)應(yīng)用中有什么優(yōu)勢(shì)?
2021-05-12 06:45:51

光子探頭電流過(guò)大

美容光子探頭電流過(guò)大。尋要多大的電阻尋求高手指點(diǎn){:1:}
2012-09-01 11:27:09

光子晶體光纖布拉格光柵傳輸譜特性研究

折射率下降;與相同周期常規(guī)光纖光柵相比,光子晶體光柵諧振波長(zhǎng)出現(xiàn)藍(lán)移;采用啁啾化處理后,10 cm長(zhǎng)光子晶體光纖光柵可以提供1200 ps以上的線性時(shí)延。【關(guān)鍵詞】:光纖光學(xué);;光子晶體光纖光柵
2010-06-02 10:05:28

光子晶體集成光電子器件

的.迄今為止,已有多種基于光子晶體的全新光子學(xué)器件被相繼提出,并且隨著半導(dǎo)體微加工技術(shù)的進(jìn)步和發(fā)展,人們對(duì)這些器件開(kāi)展了深入系統(tǒng)的實(shí)驗(yàn)研究.這些光子晶體光學(xué)器件使信息處理技術(shù)的“全光子化”和光子技術(shù)
2014-10-14 10:25:04

光子芯片技術(shù)的發(fā)展?fàn)顩r分析

和太陽(yáng)能光伏,到日常使用的DVD播放器和手機(jī),光子技術(shù)已經(jīng)滲透到生產(chǎn)生活的方方面面。谷歌、通用汽車(chē)等信息通訊技術(shù)、制造業(yè)企業(yè),對(duì)光學(xué)光子技術(shù)十分依賴(lài)。
2019-06-21 06:12:31

微波光子信號(hào)的產(chǎn)生有哪些辦法?

濾波,放大也可以方便地實(shí)現(xiàn),這就為微波光子(Microwave Photonics)技術(shù)出現(xiàn)提供了基礎(chǔ),這也就為微波光子信號(hào)的產(chǎn)生提供了機(jī)會(huì),但具體有哪些辦法能助力微波光子信號(hào)的產(chǎn)生呢?
2019-08-02 08:05:19

微波光子學(xué)中的關(guān)鍵技術(shù)研究分析

1 微波光子學(xué)產(chǎn)生的背景光波分復(fù)用技術(shù)的出現(xiàn)和摻鉺光纖放大器的發(fā)明使光通信得到迅速發(fā)展。光纖通信具有損耗低,抗電磁干擾,超寬帶,易于在波長(zhǎng)、空間、偏振上復(fù)用等很多優(yōu)點(diǎn),目前已實(shí)現(xiàn)了單路40~160
2019-07-12 08:17:33

微波光子濾波技術(shù)

微波光子技術(shù)[1]是伴隨著半導(dǎo)體激光器、集成光學(xué)、光纖波導(dǎo)光學(xué)微波單片集成電路的發(fā)展而產(chǎn)生的一種新興技術(shù),是微波光子技術(shù)結(jié)合的產(chǎn)物,它在射頻(RF)信號(hào)的產(chǎn)生、傳輸和處理等方面具有潛在的應(yīng)用前景
2019-05-28 07:59:51

RoF技術(shù)是微波光子學(xué)的一個(gè)重要應(yīng)用

應(yīng)用的增長(zhǎng),微波光子學(xué)正展現(xiàn)出一個(gè)生機(jī)勃勃的發(fā)展機(jī)遇和前景。目前,光纖通信技術(shù)不斷發(fā)展與進(jìn)步,已經(jīng)實(shí)現(xiàn)了單一波長(zhǎng)信道的40 Gb/s的高速寬帶信息傳送,解決了克服光纖中色散、非線性等效應(yīng)的光學(xué)器件和技術(shù)問(wèn)題
2019-07-11 07:14:15

THz在凝聚態(tài)物理研究中有哪些應(yīng)用?

THz波填補(bǔ)了紅外光和微波的頻率空白。使在全頻范圍內(nèi)研究凝聚態(tài)物質(zhì)與電磁波(光)的相互作用成為可能,特別是對(duì)固體元激發(fā)的研究具有重要意義。THz頻率范圍內(nèi)的固體元激發(fā)有:離子晶體的橫光學(xué)聲子和縱光學(xué)
2019-05-29 07:32:31

qsCMOS探測(cè)光子

請(qǐng)問(wèn),我利用閃爍體轉(zhuǎn)化輻射能量為光子光子數(shù)每秒幾十萬(wàn),為什么用qsCMOS檢測(cè)不到?
2022-09-01 15:45:30

一種寬禁帶圓環(huán)形PBG結(jié)構(gòu)設(shè)計(jì)

應(yīng)用于光學(xué)領(lǐng)域,然而由于其禁帶特性,近年來(lái)在微波和毫米波領(lǐng)域也獲得極大關(guān)注。在光子帶隙結(jié)構(gòu)中,電磁波經(jīng)周期性介質(zhì)散射后,某些波段電磁波強(qiáng)度會(huì)因干涉而呈指數(shù)衰減,無(wú)法在該結(jié)構(gòu)中傳播,于是在頻譜上形成帶隙
2019-06-27 07:01:22

基于光子晶體光纖的光脈沖壓縮研究

脈沖壓縮是近年來(lái)光子晶體光纖中一個(gè)新的應(yīng)用領(lǐng)域,在光通信系統(tǒng)中,利用具有高非線性系數(shù)和較大負(fù)色散值的光子晶體光纖進(jìn)行脈沖壓縮,將降低傳輸時(shí)間,提高傳輸速率。本文從非線性薛定諤方程組入手,深入探討光子
2010-05-28 13:38:25

彈性輪與地面相互作用建模及仿真研究

彈性輪與地面相互作用建模及仿真研究以半經(jīng)驗(yàn)法為指導(dǎo)思想 對(duì)剛性輪與地面相互作用進(jìn)行了總結(jié)在此基礎(chǔ)上對(duì)彈性輪與地面相互作用提出了合理假設(shè)通過(guò)對(duì)彈性輪與地面相互作用的受力分析建立了彈性輪的壓實(shí)阻力
2009-12-02 12:47:05

新型強(qiáng)雙光子熒光檢測(cè)傳感器(熒光傳感器)

)   3.強(qiáng)雙光子熒光有機(jī)硼化合物作為氟離子傳感器的研究  離子識(shí)別和雙光子熒光分別是當(dāng)前合成化學(xué)和非線性光學(xué)的研究熱點(diǎn),且都與生命科學(xué)密切相關(guān)。本項(xiàng)目利用三價(jià)有機(jī)硼化合物是本征的強(qiáng)Lewis酸,而氟離子
2013-11-12 11:52:28

淺析光子與輻射

光子,又稱(chēng)“光量子”,是光和其它電磁輻射的量子單位。一般認(rèn)為光子是沒(méi)有質(zhì)量的,有些理論中允許光子擁有非常小的靜止質(zhì)量,這樣光子會(huì)最終衰變成一種質(zhì)量更輕的粒子。如果這種衰變是確實(shí)可能的,光子就是有壽命的,據(jù)最新研究表明其壽命為10的18次方年,甚至比宇宙的壽命都長(zhǎng),真正可以說(shuō)得上是萬(wàn)世不滅。
2019-05-28 06:19:10

電流和磁場(chǎng)的相互作用

電流和磁場(chǎng)的相互作用產(chǎn)生電磁轉(zhuǎn)矩,利用叉乘可以很方便地推導(dǎo)出永磁同步電機(jī)的電磁轉(zhuǎn)矩,包括表貼式永磁同步電機(jī)(SPMSM)和內(nèi)嵌式永磁同步電機(jī)(IPMSM)。
2021-08-27 07:21:00

光子技術(shù)

實(shí)現(xiàn)利用硅光電路和微光學(xué)元件的創(chuàng)新解決方案,同時(shí)可實(shí)現(xiàn)控制電子元件和系統(tǒng)封裝的最優(yōu)集成。MACOM始終關(guān)注采用細(xì)線光刻來(lái)實(shí)現(xiàn)高密度功能的硅微光子綜合技術(shù)。這些技術(shù)將高性能低功率光學(xué)器件與最佳功能及最大
2017-11-02 10:25:07

跨阻抗放大器在光子世界

110 年前,愛(ài)因斯坦發(fā)表了影響深遠(yuǎn)的有關(guān)光電效應(yīng)的論文,從本質(zhì)上創(chuàng)造了光子學(xué)這個(gè)學(xué)科。有人可能會(huì)認(rèn)為,這么多年過(guò)去了,圍繞光子學(xué)的科學(xué)和工程學(xué)一定已經(jīng)完全成熟了。但實(shí)際上并非如此。光電二極管、雪崩光電二極管、光電倍增管等光傳感器不斷實(shí)現(xiàn)驚人的大動(dòng)態(tài)范圍,從而使電子學(xué)的探索日益深入到光子世界中。
2019-07-19 08:17:44

采用光纖環(huán)實(shí)現(xiàn)可調(diào)諧微波光子濾波器

由于在微波/毫米波光纖系統(tǒng)中潛在的應(yīng)用價(jià)值,光域上的微波信號(hào)處理技術(shù)引起了眾多研究者的興趣。比起傳統(tǒng)的電子微波濾波器,微波光子濾波器有著電磁環(huán)境兼容性、體積小、重量輕和較寬的工作帶寬等。鑒于光纖光柵
2019-07-26 08:18:49

量子力學(xué)經(jīng)典之光子的波粒子性質(zhì)

動(dòng)量,在相對(duì)論理論和經(jīng)典電磁理論兩種中。我們現(xiàn)在將討論兩種非常重要的實(shí)驗(yàn),它的解釋假設(shè)單一個(gè)光子直接與一個(gè)電子相互作用. 光子被視為它是一個(gè)定位的粒子而不是一個(gè)波陣面向空間延伸。所以,在這些實(shí)驗(yàn)中,光
2020-09-28 09:58:22

大氣中固體燃燒等離子體與微波相互作用的實(shí)驗(yàn)研究

大氣中固體燃燒等離子體與微波相互作用的實(shí)驗(yàn)研究:設(shè)計(jì)制造了含特定組分的化學(xué)藥劑,利用熱力學(xué)方法對(duì)其在大氣中燃燒所產(chǎn)生的等離子體的電子密度進(jìn)行了理論計(jì)
2009-10-26 17:03:2810

近紅外單光子計(jì)數(shù)器

近紅外單光子探測(cè)器 SPD4近紅外單光子探測(cè)器SPD4是基于InGaAs雪崩光電二極管的超靈敏探測(cè)儀器??梢蕴綔y(cè)范圍覆蓋900 nm~1700 nm波段的光子,最高可達(dá)30%的量子效率,最低至1.0
2023-03-16 13:48:40

帶通光學(xué)濾光片消雜濾光片濾波片雙光子熒光顯微

 帶通光學(xué)濾光片消雜濾光片濾波片雙光子熒光顯微     上海屹持光電推出專(zhuān)用帶通光學(xué)濾光片,性能好、性?xún)r(jià)比高,可根據(jù)用戶(hù)需求定制??捎糜陔p光子顯微成像
2023-03-23 09:51:10

Intel 硅光子400G DR4+光學(xué)收發(fā)器

Intel 硅光子400G DR4+光學(xué)收發(fā)器Intel 硅光子400G DR4+光收發(fā)器是一款小尺寸、高速、低功耗器件。該收發(fā)器設(shè)計(jì)用于數(shù)據(jù)通信應(yīng)用的光學(xué)互連。該高帶寬模塊通過(guò)單模光纖或四通
2024-02-27 11:59:57

Intel 硅光子

Intel 硅光子Intel?硅光子將硅集成電路和半導(dǎo)體激光兩個(gè)重要發(fā)明結(jié)合在一起。與傳統(tǒng)電子產(chǎn)品相比,它可以實(shí)現(xiàn)更遠(yuǎn)距離的數(shù)據(jù)傳輸。它利用了Intel?大批量硅制造的效率。特性為數(shù)據(jù)中心及其他領(lǐng)域
2024-02-27 12:19:00

光子晶體知識(shí)講解

  一、光子晶體簡(jiǎn)介   二、光子晶體中的量子理論   三、光子晶體的應(yīng)用-光子晶體光纖   四、光子晶體的發(fā)展前景
2010-09-25 16:16:420

光子光學(xué)技術(shù)誕生

的研究者在使用光脈沖來(lái)加速芯片間的數(shù)據(jù)傳輸方面取得了突破,該技術(shù)可以將超級(jí)計(jì)算機(jī)的性能提升1000多倍。IBM硅光子科學(xué)家Will Green稱(chēng),這項(xiàng)叫做CMOS集成硅光子光學(xué)的技術(shù)在一塊硅片上集成了光電模塊,讓電信號(hào)轉(zhuǎn)化為光脈沖,使芯片
2017-09-19 16:18:2714

光子晶體簡(jiǎn)介與高品質(zhì)因子光子晶體環(huán)狀腔方案

光子晶體是一種周期性的光學(xué)結(jié)構(gòu),具有光子帶隙的特性,能夠有效控制光波的傳輸。在完美光子晶體結(jié)構(gòu)中引入一些缺陷,就會(huì)形成光子晶體微腔。光子晶體微腔因其品質(zhì)因子高、模式體積小、尺寸小等優(yōu)點(diǎn),已經(jīng)成為實(shí)現(xiàn)
2017-10-26 10:15:5912

微波光子學(xué)研究的進(jìn)展

1 微波光子學(xué)產(chǎn)生的背景 光波分復(fù)用技術(shù)的出現(xiàn)和摻鉺光纖放大器的發(fā)明使光通信得到迅速發(fā)展。光纖通信具有損耗低,抗電磁干擾,超寬帶,易于在波長(zhǎng)、空間、偏振上復(fù)用等很多優(yōu)點(diǎn),目前已實(shí)現(xiàn)了單路40~160
2017-12-06 17:51:111564

病毒傳播與級(jí)聯(lián)故障相互作用過(guò)程的研究

為研究聚類(lèi)系數(shù)對(duì)病毒傳播與級(jí)聯(lián)故障相互作用的影響,提出一種改進(jìn)的病毒傳播與級(jí)聯(lián)故障相互作用模型。通過(guò)改變平均度和三角連接概率調(diào)節(jié)網(wǎng)絡(luò)聚類(lèi)系數(shù),以此觀察病毒傳播與級(jí)聯(lián)故障相互作用過(guò)程。當(dāng)不考慮三角連接
2018-01-30 17:53:571

微波光子信號(hào)的產(chǎn)生解析

選頻濾波,放大也可以方便地實(shí)現(xiàn),這就為微波光子(Microwave Photonics)技術(shù)出現(xiàn)提供了基礎(chǔ)。
2018-05-07 15:20:007263

光子相互作用將開(kāi)啟在量子計(jì)算機(jī)中的應(yīng)用

人們所謂的光子其實(shí)就是電磁波!人類(lèi)只是肉眼對(duì)可見(jiàn)光有感,實(shí)際電磁波包含多個(gè)頻率的光,這些所謂的光整體以波的形式運(yùn)動(dòng),就像電流一樣,此處決定了它的速度非??欤∥⒂^上這些波是由像光子一樣的波子組成!波粒二象性!整個(gè)宇宙都是在像波一樣震動(dòng),這就是宇宙大爆炸形成的波!我們的宇宙像一個(gè)場(chǎng)。
2018-02-26 11:37:04846

微波光子信號(hào)產(chǎn)生技術(shù)

。新興的微波光子技術(shù)能利用光子學(xué)手段產(chǎn)生高質(zhì)量微波信號(hào),在雷達(dá)信號(hào)產(chǎn)生領(lǐng)域具有廣闊的應(yīng)用前景。本文主要介紹利用微波光子技術(shù)產(chǎn)生雷達(dá)信號(hào)的研究進(jìn)展,包括基于光電振蕩器的高性能本振信號(hào)產(chǎn)生、線性調(diào)頻信號(hào)產(chǎn)生和
2018-03-09 15:51:102

光子技術(shù)的微波頻率測(cè)量

微波頻率測(cè)量及分析在軍用、民用領(lǐng)域中有著重要戰(zhàn)略地位和重大需求,并隨著通信、雷達(dá)、電子對(duì)抗中工作頻率的不斷攀升而面臨著前所未有的挑戰(zhàn)。近年來(lái)以微波光子學(xué)為基礎(chǔ)的光子微波頻率測(cè)量技術(shù)應(yīng)運(yùn)而生,因其
2018-03-19 15:20:371

微波光子信號(hào)處理技術(shù)

新一代衛(wèi)星通信系統(tǒng)將向大容量、高頻段、多波束與處理轉(zhuǎn)發(fā)方向發(fā)展,傳統(tǒng)電域微波信號(hào)處理與傳輸?shù)男l(wèi)星有效載荷系統(tǒng)存在體積大、質(zhì)量大、易受電磁干擾、速率低、帶寬瓶頸等不足,將微波光子技術(shù)引入衛(wèi)星通信系統(tǒng)
2018-03-19 16:11:522

微波光子新體制雷達(dá)的研究與發(fā)展和應(yīng)用前景

近年來(lái),雷達(dá)研究開(kāi)始引入越來(lái)越多的微波光子技術(shù)。利用微波光子技術(shù)在實(shí)現(xiàn)大帶寬的任意波形信號(hào)上表現(xiàn)出優(yōu)異的性能。微波光子移相技術(shù)可以通過(guò)選擇光纖真時(shí)延遲線的長(zhǎng)短來(lái)控制延時(shí)量,也可以用矢量和的方法實(shí)現(xiàn)微波相移,還可以借助慢光技術(shù)實(shí)現(xiàn)超過(guò)360 度的微波相移。
2018-09-04 15:47:1510837

淺析光子雷達(dá)及其關(guān)鍵技術(shù)的發(fā)展趨勢(shì)

微波光子雷達(dá)不僅被學(xué)術(shù)界認(rèn)為是新型雷達(dá)的未來(lái),也被工業(yè)界視作切實(shí)可行的解決方案。本文將回顧國(guó)內(nèi)外微波光子雷達(dá)關(guān)鍵技術(shù)與系統(tǒng)集成的主要研究進(jìn)展,并對(duì)微波光子雷達(dá)進(jìn)一步發(fā)展進(jìn)行展望。
2018-09-26 15:50:5411691

介紹微波光子雷達(dá)構(gòu)成和工作原理

摘 要:提出基于微波光子技術(shù)的新體制雷達(dá)構(gòu)成,分析其工作原理,提煉新體制雷達(dá)研究需要解決的關(guān)鍵技術(shù)。從光生微波微波光子延時(shí)和移相、微波光子濾波和全光采樣量化等關(guān)鍵技術(shù)入手,總結(jié)當(dāng)前國(guó)內(nèi)外最新研究進(jìn)展,分析微波光子新體制雷達(dá)研究與實(shí)現(xiàn)的可行性,展望微波光子新體制雷達(dá)的發(fā)展和應(yīng)用前景。
2019-03-08 15:19:1212542

中國(guó)微波光子雷達(dá)成像分辨技術(shù)已達(dá)國(guó)際領(lǐng)先

南航已經(jīng)研制出微波光子雷達(dá)成像芯片,像砂粒一樣小,比傳統(tǒng)雷達(dá)設(shè)備小一萬(wàn)倍。它不僅可用于安全領(lǐng)域,在無(wú)人駕駛汽車(chē)等也可以大展身手。
2019-05-07 15:30:262213

什么是電磁相互作用

電磁相互作用即是帶電粒子與電磁場(chǎng)的相互作用以及帶電粒子之間通過(guò)電磁場(chǎng)傳遞的相互作用。它是自然界的一種基本相互作用。
2020-01-31 10:37:004493

如何利用光子設(shè)計(jì)兩個(gè)量子位之間的相互作用

在量子計(jì)算的世界里,交互就是一切,為了讓計(jì)算機(jī)正常工作,比特(構(gòu)成數(shù)字信息的一比特和零比特)必須能夠相互作用并傳遞數(shù)據(jù)進(jìn)行處理。
2020-04-02 17:01:102182

光子算數(shù)的光子人工智能芯片專(zhuān)利揭秘

光子算數(shù)提出的此項(xiàng)專(zhuān)利,利用光學(xué)分束器將調(diào)制器所出射的光信號(hào)分成多束光子信號(hào),以使得每個(gè)調(diào)制器可以負(fù)責(zé)多路光路的傳輸,從而增大光子人工智能芯片內(nèi)所包含的傳輸光路的數(shù)量,提高其并行計(jì)算的能力,同時(shí)減少調(diào)制器的使用數(shù)量,降低光子人工智能芯片封裝和測(cè)試的難度。
2020-04-10 16:24:103800

微波光子信號(hào)的兩個(gè)產(chǎn)生方法

選頻濾波,放大也可以方便地實(shí)現(xiàn),這就為微波光子( Microwave Photonics)技術(shù)出現(xiàn)提供了基礎(chǔ)。微波光子技術(shù)的應(yīng)用主要體現(xiàn)在微波信號(hào)產(chǎn)生、用于雙向無(wú)線通信、射頻廣播、雷達(dá)系統(tǒng)等的微波光纖傳輸以及微波信號(hào)處理等方。這些應(yīng)用的主要思想
2020-07-21 10:26:002

微波光子濾波的基本原理和公式

微波光子技術(shù)是伴隨著半導(dǎo)體激光器、集成光學(xué)、光纖波導(dǎo)光學(xué)微波單片集成電路的發(fā)展而產(chǎn)生的一種新興技術(shù),是微波光子技術(shù)結(jié)合的產(chǎn)物,它在射頻(RF)信號(hào)的產(chǎn)生、傳輸和處理等方面具有潛在的應(yīng)用前景。由于
2020-07-21 10:26:000

THz在凝聚態(tài)物理研究中有什么樣的應(yīng)用

THz波填補(bǔ)了紅外光和微波的頻率空白。使在全頻范圍內(nèi)研究凝聚態(tài)物質(zhì)與電磁波(光)的相互作用成為可能,特別是對(duì)固體元激發(fā)的研究具有重要意義。THz頻率范圍內(nèi)的固體元激發(fā)有:離子晶體的橫光學(xué)聲子和縱光學(xué)聲子,離子晶體的橫光學(xué)聲子與光子相互作用產(chǎn)生的極化激元,金屬的等離子體振蕩,金屬和半導(dǎo)體的回旋共振等。
2020-12-09 10:27:000

無(wú)需外部設(shè)備就能重新配置微波光子的濾波器

瑞士洛桑聯(lián)邦理工學(xué)院光子系統(tǒng)實(shí)驗(yàn)室的研究人員發(fā)明了一種無(wú)需外部設(shè)備就能重新配置微波光子的濾波器。這為更緊湊、更環(huán)保的濾波器鋪平了道路,這些濾波器將更實(shí)用、更便宜。潛在的應(yīng)用包括檢測(cè)和通信系統(tǒng)。
2020-09-08 15:44:42890

微波光子測(cè)頻技術(shù)的典型研究成果

面對(duì)日趨復(fù)雜的電磁環(huán)境,傳統(tǒng)的測(cè)頻方法難以實(shí)現(xiàn)大范圍的帶寬測(cè)量,面臨嚴(yán)峻的挑戰(zhàn),不能滿(mǎn)足現(xiàn)代電子戰(zhàn)的需要。微波光子技術(shù)為瞬時(shí)測(cè)頻接收機(jī)性能的提升和改進(jìn)提供了可能,能夠提供一個(gè)寬帶測(cè)頻、低損耗、抗干擾、系統(tǒng)小型便攜的解決方案。
2020-09-19 11:04:142852

《炬豐科技-半導(dǎo)體工藝》III-V集成光子的制備

了一系列III-V材料以及各種各樣的設(shè)備。?最初,設(shè)計(jì),制造和光學(xué)表征研究了鋁砷化鎵波導(dǎo)增強(qiáng)光學(xué)非線性文章全部詳情:壹叁叁伍捌零陸肆叁叁叁耳相互作用。?基于我們的研究結(jié)果,我們提出了一種新型的AlGaAs集成非線性光學(xué)波導(dǎo)。波導(dǎo)是集成光子器件中極具吸引力的元件,
2023-04-19 10:04:00130

集成光子制備工藝的研究

摘要 本文主要研究集成光子的制備工藝。基于III-V半導(dǎo)體的器件, 這項(xiàng)工作涵蓋了一系列III-V材料以及各種各樣的設(shè)備。 最初,設(shè)計(jì),制造和光學(xué)表征研究了鋁砷化鎵波導(dǎo)增強(qiáng)光學(xué)非線性相互作用
2022-02-24 14:55:40950

基于微波光子技術(shù)的新型相控陣的架構(gòu)形式和技術(shù)路線

該文探討了相控陣?yán)走_(dá)的發(fā)展需求,提出了基于微波光子技術(shù)的新型相控陣的架構(gòu)形式和技術(shù)路線。針對(duì)其工程實(shí)現(xiàn),凝練了當(dāng)前所面臨的主要科學(xué)問(wèn)題和重大技術(shù)挑戰(zhàn),并對(duì)未來(lái)的研究工作和該領(lǐng)域的發(fā)展進(jìn)行了展望。
2022-04-28 08:57:542883

光子自旋霍爾效果(SHE)的研究

當(dāng)光束在光學(xué)界面被反射(或折射)或在非均勻介質(zhì)中傳播時(shí),具有相反自旋角動(dòng)量的光子相互分離,導(dǎo)致光的自旋相關(guān)分裂,這種現(xiàn)象稱(chēng)為光子自旋霍爾效果(SHE)。
2022-09-19 11:21:271562

量子混沌:相互作用如何影響量子多體系統(tǒng)的局域化?

Weld 回憶道:“Victor 提出的問(wèn)題是,如果不是單純的無(wú)相互作用的量子系統(tǒng),由于干涉而保持穩(wěn)定,而是有一堆這樣的量子轉(zhuǎn)子,它們?nèi)靠梢耘鲎埠?b class="flag-6" style="color: red">相互作用,會(huì)發(fā)生什么?局域化會(huì)持續(xù)存在,還是會(huì)被相互作用破壞?”
2022-10-27 09:37:24533

西安光機(jī)所在光子力學(xué)研究方面的研究成果

光學(xué)力(光力、光子力)是光(光子)與微小粒子相互作用時(shí)由于動(dòng)量傳遞導(dǎo)致的力,可以對(duì)微粒進(jìn)行操控(稱(chēng)之為光子力學(xué))。由此產(chǎn)生的光鑷技術(shù),自1986年誕生以來(lái),作為一種不可替代的工具,已被廣泛應(yīng)用于物理
2022-11-03 17:47:06715

納米技術(shù)對(duì)光學(xué)光子技術(shù)的影響

納米技術(shù)對(duì)光學(xué)光子技術(shù)的影響
2022-12-28 09:51:17968

單片集成的百光子數(shù)探測(cè)器

量子光學(xué)是現(xiàn)代光學(xué)發(fā)展的重要分支。由于光量子態(tài)包含的光子數(shù)往往很少,因此量子光學(xué)實(shí)驗(yàn)離不開(kāi)單光子探測(cè)器。在1550nm波長(zhǎng)附近的通信波段,由于其卓越的性能,超導(dǎo)納米線單光子探測(cè)器(SNSPD
2023-01-03 14:33:07903

鈮酸鋰超構(gòu)表面制備及光子學(xué)應(yīng)用

作為三維超構(gòu)材料的衍生物,具有亞波長(zhǎng)厚度的人工超構(gòu)表面結(jié)構(gòu)能夠在緊湊的平臺(tái)上靈活操縱光與物質(zhì)的相互作用,有利于多功能、超緊湊光子器件的研發(fā),對(duì)于微納光子學(xué)和集成光子學(xué)具有重要意義。
2023-01-14 17:27:592416

光子器件生產(chǎn)變得可控

之前,量子光子學(xué)實(shí)驗(yàn)因大量使用的“塊體光學(xué)”而臭名昭著,這些塊體光學(xué)密布于光學(xué)臺(tái)上并占據(jù)了整個(gè)實(shí)驗(yàn)室。目前,光子芯片正徹底改變這一情況。小型化、穩(wěn)定性和適合大規(guī)模生產(chǎn)可能會(huì)使它們成為現(xiàn)代量子光子學(xué)的主力軍。
2023-02-26 11:58:251138

Quest替代EMCCD在超冷原子中的光子定量研究中的應(yīng)用

Imaging是一種將超冷原子/離子與激光相互作用來(lái)測(cè)量其空間分布的方法。該技術(shù)使用一個(gè)相對(duì)弱的探測(cè)激光束通過(guò)原子云進(jìn)行傳輸,并測(cè)量出原子云的吸收率。然后,通過(guò)與未被原子云遮擋的探測(cè)激光束進(jìn)行比較,可以確定原子
2023-03-29 08:06:42225

半導(dǎo)體材料在納米光子學(xué)中的作用

半導(dǎo)體材料在開(kāi)發(fā)納米光子技術(shù)方面發(fā)揮著重要作用。
2023-05-14 16:58:55591

Ansys Lumerical FDTD的主要應(yīng)用

Ansys Lumerical是業(yè)界領(lǐng)先的光子學(xué)仿真工具,其擁有完整的光子學(xué)仿真解決方案,支持全套光子 學(xué)器件級(jí)和系統(tǒng)級(jí)仿真。 器件和系統(tǒng)級(jí)工具無(wú)縫協(xié)作,讓設(shè)計(jì)人員能夠?qū)?b class="flag-6" style="color: red">相互作用的光學(xué)、 電氣和熱效應(yīng)進(jìn)行建模仿真。
2023-05-24 10:41:362826

領(lǐng)先的光子學(xué)仿真工具Ansys Lumerical功能詳解

Ansys Lumerical是業(yè)界領(lǐng)先的光子學(xué)仿真工具,其擁有完整的光子學(xué)仿真解決方案,支持全套光子 學(xué)器件級(jí)和系統(tǒng)級(jí)仿真。 器件和系統(tǒng)級(jí)工具無(wú)縫協(xié)作,讓設(shè)計(jì)人員能夠?qū)?b class="flag-6" style="color: red">相互作用的光學(xué)、 電氣和熱效應(yīng)進(jìn)行建模仿真。
2023-05-26 09:40:086432

6月,哈爾濱等你!| 第一屆全國(guó)光與物質(zhì)相互作用及其應(yīng)用大會(huì)

21世紀(jì)將是光的世紀(jì),光學(xué)與微電子學(xué)、材料科學(xué)、人工智能、生命科學(xué)等多學(xué)科交叉融合日趨深入。光與物質(zhì)之間的相互作用已成為許多重要技術(shù)的基礎(chǔ),推動(dòng)了物質(zhì)科學(xué)的突破與發(fā)展。2023年6月2-4日,閃光
2023-05-30 16:35:26324

高壓放大器在微波光子雷達(dá)中的應(yīng)用有哪些

微波光子雷達(dá)是一種新型的雷達(dá)技術(shù),它利用微波光子相結(jié)合的方式進(jìn)行探測(cè)和成像。在微波光子雷達(dá)系統(tǒng)中,高壓放大器作為一個(gè)關(guān)鍵的組件,主要用于對(duì)微波信號(hào)進(jìn)行放大,以增強(qiáng)雷達(dá)系統(tǒng)的探測(cè)能力和成像精度。本文將詳細(xì)介紹高壓放大器在微波光子雷達(dá)中的應(yīng)用。
2023-06-07 09:01:23325

Ansys Lumerical功能詳解:分析平面波入射到周期性結(jié)構(gòu)上的光學(xué)響應(yīng)

Ansys Lumerical是業(yè)界領(lǐng)先的光子學(xué)仿真工具,其擁有完整的光子學(xué)仿真解決方案,支持全套光子學(xué)器件級(jí)和系統(tǒng)級(jí)仿真。 器件和系統(tǒng)級(jí)工具無(wú)縫協(xié)作,讓設(shè)計(jì)人員能夠?qū)?b class="flag-6" style="color: red">相互作用的光學(xué)、 電氣和熱效應(yīng)進(jìn)行建模仿真。
2023-06-08 14:40:381027

激光材料中的原子/分子與生成激光的光子之間的相互作用

光在激光器中是經(jīng)過(guò)以下過(guò)程產(chǎn)生的:物質(zhì)中的電子從激發(fā)態(tài)能級(jí)躍遷到較低能級(jí),發(fā)射光子,貢獻(xiàn)于激光 束的產(chǎn)生。因此,光與物質(zhì)之間的基本相互作用是分析激光器運(yùn)行和激光特性的基礎(chǔ)。這一節(jié)簡(jiǎn)略描述激光 材料
2023-06-12 10:37:54634

集成微波光子射頻前端技術(shù)詳解

微波光子射頻前端具有頻率覆蓋范圍大、工作波段和瞬時(shí)帶寬可靈活重構(gòu)、抗電磁干擾等優(yōu)勢(shì),在泛在無(wú)線通信、軟件無(wú)線電、雷達(dá)和電子戰(zhàn)系統(tǒng)中有著廣闊的應(yīng)用前景。為進(jìn)一步減小系統(tǒng)的尺寸和功耗以滿(mǎn)足實(shí)際應(yīng)用的需求
2023-06-14 10:22:321276

什么是光調(diào)制技術(shù) 微波光子濾波技術(shù)介紹

電光調(diào)制法是產(chǎn)生微波光子信號(hào)最直接的方法,但產(chǎn)生的信號(hào)的質(zhì)量跟隨射頻信號(hào)的質(zhì)量,不易控制。光諧波濾波法產(chǎn)生微波信號(hào)的優(yōu)勢(shì)在于能有效克服外差法所產(chǎn)生的微波信號(hào)頻率不穩(wěn)定性和相位噪聲性能差等問(wèn)題。
2023-06-16 11:32:23403

如何設(shè)計(jì)微波光子通信中的非互易設(shè)備?

這期我們的案例是Spatiotemporal modulation, 時(shí)空調(diào)制。這種效果能夠打破互易性,用來(lái)設(shè)計(jì)微波光子通信中的非互易設(shè)備。
2023-06-16 15:06:17547

光子學(xué)的發(fā)展和光子技術(shù)的廣泛應(yīng)用

,人類(lèi)將邁進(jìn)光子時(shí)代,光子學(xué)的發(fā)展和光子技術(shù)的廣泛應(yīng)用將對(duì)人類(lèi)生活產(chǎn)生巨大影響。 關(guān)鍵詞 :現(xiàn)代光學(xué)光子學(xué);光子技術(shù);應(yīng)用;光信息 光學(xué)是研究光的產(chǎn)生和傳播、光的本性、光與物質(zhì)相互作用的科學(xué)。光學(xué)作為一門(mén)誕生340余年的古
2023-06-17 10:15:57608

磁鐵相互作用的基本原理

磁鐵會(huì)釋放磁通線,干簧開(kāi)關(guān)受感應(yīng)而關(guān)閉組件。干簧開(kāi)關(guān)這種相互作用在不消耗任何功率的情況下發(fā)生,且可進(jìn)行數(shù)十億次可靠操作。磁鐵相互作用的基礎(chǔ)干簧開(kāi)關(guān)和磁鐵的相互作用
2021-05-26 10:35:442151

光子芯片的原理和應(yīng)用

光子芯片是一種基于光子學(xué)的集成電路,將光子器件集成在芯片上,實(shí)現(xiàn)了光電子集成。相比傳統(tǒng)的電子芯片,光子芯片具有更高的數(shù)據(jù)傳輸速度、更低的能耗和更大的帶寬。光子芯片的出現(xiàn)將會(huì)改變通信、計(jì)算、傳感等領(lǐng)域的面貌,具有廣闊的應(yīng)用前景。
2023-06-21 10:04:517258

光子學(xué)器件的逆向設(shè)計(jì)方法和應(yīng)用

光子學(xué)器件通過(guò)物體與光的相互作用可以實(shí)現(xiàn)對(duì)光場(chǎng)多維度的調(diào)控,在現(xiàn)代光學(xué)的各個(gè)領(lǐng)域都有廣闊的應(yīng)用前景。傳統(tǒng)光子學(xué)器件的設(shè)計(jì)主要是基于已知的物理原理,然后通過(guò)對(duì)個(gè)別特征參數(shù)的微調(diào)以實(shí)現(xiàn)對(duì)光子學(xué)結(jié)構(gòu)的優(yōu)化。
2023-07-15 11:06:41876

相互作用對(duì)有機(jī)光電性質(zhì)調(diào)控的理論研究

相較于共價(jià)鍵相互作用,分子內(nèi)非共價(jià)相互作用是一種弱的兩個(gè)原子之間或者兩個(gè)基團(tuán)之間的非鍵相互作用
2023-07-31 17:12:43564

現(xiàn)代光學(xué)光子技術(shù)的應(yīng)用(1)

將邁進(jìn)光子時(shí)代,光子學(xué)的發(fā)展和光子技術(shù)的廣泛應(yīng)用將對(duì)人類(lèi)生活產(chǎn)生巨大影響。 ??光學(xué)是研究光的產(chǎn)生和傳播、光的本性、光與物質(zhì)相互作用的科學(xué)。光學(xué)作為一門(mén)誕生340余年的古老科學(xué),經(jīng)歷了漫長(zhǎng)的發(fā)展過(guò)程,它的發(fā)展也表征著
2023-11-30 15:36:25201

強(qiáng)相互作用對(duì)霍爾響應(yīng)的影響

霍爾效應(yīng)源于帶電粒子在磁場(chǎng)中的運(yùn)動(dòng),它對(duì)材料的描述具有深遠(yuǎn)的影響,其影響遠(yuǎn)遠(yuǎn)超出了凝聚態(tài)物質(zhì)的范圍。了解相互作用系統(tǒng)中的這種效應(yīng)是一個(gè)根本性的挑戰(zhàn),即使對(duì)于小磁場(chǎng)也是如此。
2023-08-01 15:59:31326

什么是自相互作用呢?中微子之間超越標(biāo)準(zhǔn)模型的相互作用,

中微子是一種非常微小的基本粒子,它幾乎不與其他物質(zhì)相互作用,所以它可以穿透整個(gè)地球而不被阻擋。
2023-08-30 16:02:49498

中科鑫通光子芯片產(chǎn)業(yè)項(xiàng)目簽約落戶(hù)天津津南區(qū)

作為國(guó)內(nèi)首家“多材料、跨尺寸”光子芯片晶圓代工企業(yè),中科鑫通將發(fā)揮在“多材料、跨尺寸”光子芯片核心工藝技術(shù)方面的領(lǐng)先優(yōu)勢(shì),為我國(guó)光通信、數(shù)據(jù)中心、微波光子、人工智能、生物醫(yī)療、量子信息等領(lǐng)域提供基礎(chǔ)產(chǎn)業(yè)支撐。
2023-12-05 09:51:39459

多模微環(huán)諧振器中的多功能光子分子開(kāi)關(guān)研究

近日,北京大學(xué)電子學(xué)院王興軍、舒浩文團(tuán)隊(duì)提出集成微波光子寬頻段精細(xì)信號(hào)處理解決方案,通過(guò)操控波導(dǎo)內(nèi)空間模式的耦合關(guān)系來(lái)調(diào)控諧振峰劈裂的狀態(tài);
2024-02-26 09:28:52267

全球領(lǐng)先微波光子芯片問(wèn)世,應(yīng)用廣泛

顯眼的是,這項(xiàng)研究成果帶頭開(kāi)創(chuàng)了全新的研究領(lǐng)域——鈮酸鋰微波光子學(xué)。在這項(xiàng)領(lǐng)域中,微波光子芯片體積更為微小,具備更高的信號(hào)真實(shí)性和平滑的延遲特性。
2024-03-07 14:10:20160

光子連接懸浮在真空中的納米粒子,并控制它們之間的相互作用

文本介紹了用光子連接懸浮在真空中的納米粒子,并控制它們之間的相互作用的實(shí)驗(yàn)。這展示了一種在宏觀尺度上實(shí)現(xiàn)量子糾纏和量子信息傳輸?shù)目赡苄浴?/div>
2024-03-20 11:47:09177

簡(jiǎn)單認(rèn)識(shí)微波光子集成芯片和硅基光子集成芯片

微波光子集成芯片是一種新型的集成光電子器件,它將微波信號(hào)和光信號(hào)在同一芯片上進(jìn)行處理和傳輸。這種芯片的基本原理是利用光子器件和微波器件的相互作用來(lái)實(shí)現(xiàn)信號(hào)的傳輸和處理。光子器件通常由光源、光調(diào)制器
2024-03-20 16:11:22108

微波光子集成芯片和硅基光子集成芯片的區(qū)別

微波光子集成芯片和硅基光子集成芯片都是光電子領(lǐng)域的重要技術(shù),但它們?cè)谠O(shè)計(jì)原理、應(yīng)用領(lǐng)域以及制造工藝上存在著顯著的區(qū)別。
2024-03-20 16:14:06104

深入解析硅光子學(xué)

在硅中,光子和電場(chǎng)有時(shí)可以相互作用。光可以刺激電流,使光信號(hào)轉(zhuǎn)換為電子信號(hào)。而電場(chǎng)可以改變硅的光學(xué)特性,使電子信號(hào)可以控制光學(xué)開(kāi)關(guān)和調(diào)制器。
2024-03-22 09:47:1971

已全部加載完成