chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

電子發(fā)燒友App

硬聲App

掃碼添加小助手

加入工程師交流群

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

電子發(fā)燒友網>模擬技術>互感與串擾的關系

互感與串擾的關系

收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關推薦
熱點推薦

信號完整性中最基本的現(xiàn)象之

靜態(tài)網絡靠近干擾源一端的稱為近端(也稱后向),而遠離干擾源一端的稱為遠端(或稱前向串擾)。
2021-01-24 16:13:008677

關于高速PCB設計的知識這篇文章講清楚了

) 指當信號在傳輸線上傳播時,因電磁耦合而對相鄰的傳輸線產生的不期望的電壓噪聲干擾。這種干擾是由于傳輸線之間的互感和互容引起的。PCB板層的參數(shù)、信號線間距、驅動端和接收端的電氣特性及線端接方式對都有一定的影響。 克服的主要
2022-09-05 18:55:083020

解決的設計方法

因此了解問 題產生的機理并掌握解決的設計方法,對于工程師來說是相當重要的,如果處理不好可能會嚴重影響整個電路的效果。
2022-09-28 09:41:252687

淺談PCB及降低方法

  先來說一下什么是就是PCB上兩條走線,在互不接觸的情況下,一方干擾另一方,或者相互干擾。主要表現(xiàn)是波形有異常雜波,影響信號完整性(Signal integrity, SI)等等。一般情況下可以分為容性和感性兩種。
2022-11-10 17:00:442650

什么是?如何減少?

01 . 什么是? ? 是 PCB 的走線之間產生的不需要的噪聲 (電磁耦合)。 是 PCB 可能遇到的最隱蔽和最難解決的問題之一。最難搞的是,一般都會發(fā)生在項目的最后階段,而且
2023-05-23 09:25:598732

SiC MOSFET模塊問題及應用對策

針對SiC MOSFET模塊應用過程中出現(xiàn)的問題,文章首先對3種測量差分探頭的參數(shù)和測 量波形進行對比,有效減小測量誤差;然后詳細分析引起模塊柵源極出現(xiàn)電壓正向抬升和負向峰值過大 的原因
2023-06-05 10:14:218498

高速數(shù)字電路設計問題產生的機理原因

在電子產品的設計中普遍存在,通過以上的分析與仿真,了解了的特性,總結出以下減少的方法。
2023-06-13 10:41:522372

什么是?PCB走線詳解

先來說一下什么是,就是PCB上兩條走線,在互不接觸的情況下,一方干擾另一方,或者相互干擾。
2023-09-11 14:18:422335

信號完整性-的模型

是四類信號完整性問題之一,指的是有害信號從一個線網傳遞到相鄰線網。任何一對線網之間都存在。
2023-09-25 11:29:073292

學習筆記(1)

講到,基礎的知識比如是由電場耦合和磁場耦合的共同結果啊,從影響的方向來分有FEXT和NEXT這些小P就都不說了。當小P在學習一篇PCIe 5.0連接器一致性的paper里出現(xiàn)了ICN的字樣。
2023-10-25 14:43:227932

信號的介紹

信號(Crosstalk)是指在信號傳輸過程中,一條信號線上的信號對相鄰信號線產生的干擾,這種干擾是由于電磁場耦合或直接電容、電感耦合引起的。根據(jù)耦合類型和位置的不同,信號主要分為以下幾類
2024-09-12 08:08:344569

之耦合的方式

是信號完整性中最基本的現(xiàn)象之一,在板上走線密度很高時的影響尤其嚴重。我們知道,線性無緣系統(tǒng)滿足疊加定理,如果受害線上有信號的傳輸,引起的噪聲會疊加在受害線上的信號,從而使其信號產生畸變
2019-05-31 06:03:14

介紹

。兩根線(也包括PCB的薄膜布線)獨立的情況下,相互間應該不會有電氣信號和噪聲等的影響,但尤其是兩根線平行的情況下,會因存在于線間的雜散(寄生)電容和互感而引發(fā)干擾。所以,也可以理解為感應噪聲
2018-11-29 14:29:12

是什么原理?

的基本原理
2021-03-18 06:26:37

溯源是什么?

所謂,是指有害信號從一個傳輸線耦合到毗鄰傳輸線的現(xiàn)象,噪聲源(攻擊信號)所在的信號網絡稱為動態(tài)線,***的信號網絡稱為靜態(tài)線。產生的過程,從電路的角度分析,是由相鄰傳輸線之間的電場(容性)耦合和磁場(感性)耦合引起,需要注意的是不僅僅存在于信號路徑,還與返回路徑密切相關。
2019-08-02 08:28:35

ADC電路的怎么解決?

,ADC是SAR型 18位單通道全差分輸入的ADC。ADC的后端是MCU,MCU將數(shù)字信號處理之后再畫到顯示屏上顯示實時波形。 調試發(fā)現(xiàn)顯示的信號有,表現(xiàn)為某一路信號懸空之后,相鄰的那一路信號上就會出現(xiàn)噪聲。將采樣的時間延長也無法消除。 想請教一下各路專家,造成串的原因和如何消除,謝謝。
2025-01-07 06:15:34

EMC的是什么?

和噪聲等的影響,但尤其是兩根線平行的情況下,會因存在于線間的雜散(寄生)電容和互感而引發(fā)干擾。所以,也可以理解為感應噪聲。
2019-08-08 06:21:47

PCB設計與-真實世界的(上)

延伸出去的場稱為邊緣場。這些邊緣場將會通過互容與互感轉化為另一條線上的能量。而的本質,其實就是傳輸線之間的互容與互感。2.1 容性耦合 容性耦合示意圖如下(圖2): 圖2容性耦合電流為:式1其中Cm
2014-10-21 09:53:31

PCB設計與-真實世界的(下)

仿真。結果如圖9: 圖9 從圖上看出傳輸線上的明顯變大,但上升時間在1nsec時同樣低于3%。 傳輸線上的不止跟上升時間與線間距有關系,與線長同樣有關系。我們讓RT=0.3ns,線寬為
2014-10-21 09:52:58

【連載筆記】信號完整性-和軌道塌陷

情況即如多個信號經過接插件共用的返回路徑是一個引腳而不是一個平面。此時的感性耦合噪聲大于容性耦合噪聲。感性耦合占主導地位時,通常這種歸為開關噪聲,地彈等。這類噪聲由耦合電感即互感產生,通常發(fā)生
2017-11-27 09:02:56

什么是

。兩根線(也包括PCB的薄膜布線)獨立的情況下,相互間應該不會有電氣信號和噪聲等的影響,但尤其是兩根線平行的情況下,會因存在于線間的雜散(寄生)電容和互感而引發(fā)干擾。所以,也可以理解為感應噪聲
2019-03-21 06:20:15

什么是?

的概念是什么?到底什么是?
2021-03-05 07:54:17

什么是

什么是?互感和互容電感和電容矩陣引起的噪聲
2021-02-05 07:18:27

原創(chuàng)|SI問題之

。隨著系統(tǒng)向更小型化及更高速度方向發(fā)展,對系統(tǒng)設計的影響也顯著加大了,設計工程師必須了解產生的機理以及找到更好的方法使產生的負面影響最小化。信號的成因分為兩種:互感、互容?!?b class="flag-6" style="color: red">互感”通過
2016-10-10 18:00:41

基于高速PCB分析及其最小化

和器件的上升/下降時間決定了 ?! ≡谶@里我們不做這些參數(shù)對影響的定量分析,有關這些參數(shù)的相互關系及對影響的程度。  2.4的變化趨勢  互感與互容的大小影響著的大小,從而等價地改變
2018-09-11 15:07:52

如何降低嵌入式系統(tǒng)的影響?

在嵌入式系統(tǒng)硬件設計中,是硬件工程師必須面對的問題。特別是在高速數(shù)字電路中,由于信號沿時間短、布線密度大、信號完整性差,的問題也就更為突出。設計者必須了解產生的原理,并且在設計時應用恰當?shù)姆椒?,?b class="flag-6" style="color: red">串產生的負面影響降到最小。
2019-11-05 08:07:57

高速PCB布局的分析及其最小化

)。主要源自兩相鄰導體之間所形成的互感Lm和互容Cm。        2.1感性耦合&nbsp
2009-03-20 13:56:06

高速數(shù)字系統(tǒng)的問題怎么解決?

問題產生的機理是什么高速數(shù)字系統(tǒng)的問題怎么解決?
2021-04-25 08:56:13

近端&遠端

前端
信號完整性學習之路發(fā)布于 2022-03-02 11:41:28

IC中多余物缺陷對信號的定量研究

該文研究了銅互連線中的多余物缺陷對兩根相鄰的互連線間信號的,提出了互連線之間的多余物缺陷和互連線之間的互容、互感模型,用于定量的計算缺陷對的影響。提出
2010-02-09 15:03:506

超深亞微米設計中的影響及避免

分析了在超深亞微米階段,對高性能芯片設計的影響,介紹了消除影響的方法。    關鍵詞:,布線,關鍵路徑,
2009-05-05 20:59:161434

什么是路間/幅頻特性/隨機信噪比

什么是路間/幅頻特性/隨機信噪比 路間    路間:多路信號在同一設備中,由于空間的輻射與電源的波動
2010-03-26 11:49:401504

互容與關系

假設已知一個互容的值為CM,電路的上升時間為T,接收電路的阻抗為RB,我們可以按驅動波形VA的相對值來估算。 首先求出波形VA的單
2010-05-30 17:45:072031

完整地平面的

兩個導體之間的取決于它們之間的互感和互容。通常在數(shù)字設計中,感性相當于或大于容性,因此在這里開始我們主要討論感性耦合的機制。
2010-06-10 16:22:461897

板級互連線的規(guī)律研究與仿真

是 高速電路板 設計中干擾信號完整性的主要噪聲之一;為有效地抑制噪聲,保證系統(tǒng)設計的功能正確,有必要分析問題。針對實際PCB中互連線拓撲和的特點,構
2011-06-22 15:58:540

pcb設計中的—兩傳輸線相鄰太近

簡單地講都是因為兩傳輸線相鄰太近造成的,那么在高頻走線里如何減小串,首先要弄清楚傳輸線的概念,搞清楚傳輸線跟什么有關系。以下一些供參考。
2011-11-21 13:50:363568

高速PCB中微帶線的分析

對高速PCB中的微帶線在多種不同情況下進行了有損傳輸?shù)?b class="flag-6" style="color: red">串仿真和分析, 通過有、無端接時改變線間距、線長和線寬等參數(shù)的仿真波形中近端和遠端波形的直觀變化和對比,
2011-11-21 16:53:020

使用實時示波器進行分析

使用實時示波器進行分析
2017-09-07 17:24:5813

PCB設計中,如何避免

變化的信號(例如階躍信號)沿傳輸線由A到B傳播,傳輸線C-D上會產生耦合信號,變化的信號一旦結束也就是信號恢復到穩(wěn)定的直流電平時,耦合信號也就不存在了,因此僅發(fā)生在信號跳變的過程當中,并且信號沿
2017-11-29 14:13:290

如何消除碼間_怎么避免碼間

所謂碼間,就是數(shù)字基帶信號通過基帶傳輸系統(tǒng)時,由于系統(tǒng)(主要是信道)傳輸特性不理想,或者由于信道中加性噪聲的影響,使收端脈沖展寬,延伸到鄰近碼元中去,從而造成對鄰近碼元的干擾,我們將這種現(xiàn)象稱為碼間。
2018-04-16 14:25:3947082

近端與遠端現(xiàn)象解析

們就需要弄清楚近端與遠端了。攻擊信號的幅值影響著的大小;減小串的途徑就是減小信號之間的耦合,增加信號與其回流平面之間的耦合。
2018-10-27 09:25:5216189

在高速PCB設計中的影響分析

信號頻率變高,邊沿變陡,印刷電路板的尺寸變小,布線密度加大等都使得在高速PCB設計中的影響顯著增加。問題是客觀存在,但超過一定的界限可能引起電路的誤觸發(fā),導致系統(tǒng)無法正常工作。設計者必須了解產生的機理,并且在設計中應用恰當?shù)姆椒?,?b class="flag-6" style="color: red">串產生的負面影響最小化。
2019-05-29 14:09:481271

高速PCB設計中如何消除

PCB布局上的可能是災難性的。如果不糾正,可能會導致您的成品板完全無法工作,或者可能會受到間歇性問題的困擾。讓我們來看看是什么以及如何減少PCB設計中的。
2019-07-25 11:23:583989

的仿真分析

在實際的設計中,板層特性(如厚度,介質常數(shù)等)以及線長、線寬、線距、信號的上升時間等都會對有所影響。
2019-08-14 09:13:416832

問題產生機理及解決方法

今天該聊聊——!
2019-08-14 09:12:2325735

解決的方法

在電子產品的設計中普遍存在,通過以上的分析與仿真,了解了的特性,總結出以下減少的方法:
2019-08-14 11:50:5520421

淺析影響因素

在實際的設計中,板層特性(如厚度,介質常數(shù)等)以及線長、線寬、線距、信號的上升時間等都會對有所影響。
2019-08-14 11:48:019221

什么是它的形成原理是怎樣的

是信號完整性中最基本的現(xiàn)象之一,在板上走線密度很高時的影響尤其嚴重。我們知道,線性無緣系統(tǒng)滿足疊加定理,如果受害線上有信號的傳輸,引起的噪聲會疊加在受害線上的信號,從而使其信號產生畸變。
2019-09-18 15:10:3715882

如何抑制PCB設計中的

耦合電感電容產生的前向串擾和反向同時存在,并且大小幾乎相等,這樣,在受害網絡上的前向串擾信號由于極性相反,相互抵消,反向極性相同,疊加增強。分析的模式通常包括默認模式,三態(tài)模式和最壞情況模式分析。
2019-09-19 14:39:541448

輕松定位和修復pcb問題

PCB問題可以很容易地定位和固定使用HyperLynx?墊專業(yè)或墊+標準。從PCB布局出口你的設計之后,在批處理模式運行模擬和/或交互模式來識別潛在的問題。沃克BoardSim耦合地區(qū)使您能
2019-10-16 07:10:003787

如何減少電路板設計中的

在電路板設計中無可避免,如何減少就變得尤其重要。在前面的一些文章中給大家介紹了很多減少和仿真的方法。
2020-03-07 13:30:004390

如何使用LC濾波器來降低電路板中的

是因電路板布線間的雜散電容和互感,噪聲與相鄰的其他電路板布線耦合。下面是LC濾波器的圖形布局和部件配置帶來的及其對策示例。
2020-02-17 16:48:263239

EMC中的詳細說明

是信號完整性中最基本的現(xiàn)象之一,在板上走線密度很高時的影響尤其嚴重。我們知道,線性無緣系統(tǒng)滿足疊加定理,如果受害線上有信號的傳輸,引起的噪聲會疊加在受害線上的信號,從而使其信號產生畸變。
2020-11-12 10:39:002

如何解決PCB問題

高速PCB設計中,信號之間由于電磁場的相互耦合而產生的不期望的噪聲電壓信號稱為信號超出一定的值將可能引發(fā)電路誤動作從而導致系統(tǒng)無法正常工作,解決PCB問題可以從以下幾個方面考慮。
2020-07-19 09:52:052820

如何減少PCB布局中的

當電路板上出現(xiàn)時,電路板可能無法正常工作,并且在那里也可能會丟失重要信息。為了避免這種情況, PCB 設計人員的最大利益在于找到消除其設計中潛在的方法。讓我們談談和一些不同的設計技術
2020-09-19 15:47:463330

如何解決PCB布局中的問題

用于網絡的RF板、高速處理器的板以及許多其他系統(tǒng)對強度有嚴格的要求。信號標準中并不總是規(guī)定最大串強度,而且在設計中最強烈的地方也不總是很明顯。盡管您可能會嘗試對設計進行正確的布局規(guī)劃,但
2021-01-13 13:25:553420

信號完整性系列之“

本文主要介紹的概念,及其FEXT、NEXT等,以及的消除措施。 是指當信號在傳輸線上傳播時,因電磁耦合對相鄰的傳輸線產生的不期望的電壓噪聲干擾。這種干擾是由于兩條信號線間的耦合,即
2020-10-19 17:54:498359

淺談層疊設計、同層、層間

1、 層疊設計與同層 很多時候,超標的根源就來自于層疊設計。也就是我們第一篇文章說的設計上先天不足,后面糾正起來會比較困難。 講到層疊對的影響,這里有另一張圖片,和上文提到的參考平面
2021-04-09 17:21:575483

淺談溯源,是怎么產生的

文章——溯源。 提到,防不勝防,令人煩惱。不考慮,仿真波形似乎一切正常,考慮了,信號質量可能就讓人不忍直視了,于是就出現(xiàn)了開頭那驚悚的一幕。下面就來說說是怎么產生的。 所謂,是指有害信號從一
2021-03-29 10:26:084155

如何解決EMC設計中的問題?

? 是通過近電場(電容耦合)和磁場(電感耦合)在相鄰導體之間耦合的噪聲。盡管任何相鄰導體都表現(xiàn)出,但是當它出現(xiàn)在強干擾信號和敏感信號之間時,對信號完整性將造成很大的影響。 的再定
2020-12-25 15:12:293169

是信號完整性中最基本的現(xiàn)象之一

是兩條信號線之間的耦合、信號線之間的互感和互容引起線上的噪聲。容性耦合引發(fā)耦合電流,而感性耦合引發(fā)耦合電壓。PCB板層的參數(shù)、信號線間距、驅動端和接收端的電氣特性及線端接方式對都有一定的影響。
2022-02-21 11:35:303664

淺談“

是兩條信號線之間的耦合、信號線之間的互感和互容引起線上的噪聲。容性耦合引發(fā)耦合電流,而感性耦合引發(fā)耦合電壓。PCB板層的參數(shù)、信號線間距、驅動端和接收端的電氣特性及線端接方式對都有一定的影響。
2021-01-23 08:19:2416

哪些因素與有關?

路徑之間會產生力線,并在信號路徑周圍產生非常豐富的電磁場。這些擴展場也稱為邊緣場,邊緣場會通過互電容和互感在另一條傳輸線上轉換成能量。的本質實際上是傳輸線之間的互電容和互感
2022-08-01 16:54:162573

是怎么引起的 降低有哪些方法

是兩條信號線之間的耦合、信號線之間的互感和互容引起線上的噪聲。容性耦合引發(fā)耦合電流,而感性耦合引發(fā)耦合電壓。PCB板層的參數(shù)、信號線間距、驅動端和接收端的電氣特性及線端接方式對都有一定的影響。
2022-08-15 09:32:0611704

是什么?如何去減小串

一個網絡傳遞信號,有些電壓和電流通過網絡之間的耦合(容性耦合和感性耦合),傳遞到相鄰網絡,這就是
2022-08-16 09:23:526466

線對間的近端測量

在高速鏈路設計或者射頻鏈路設計中,是一個非常重要的分析參數(shù)。如何測量、如何分析。一般遵循著一些設計經驗或者規(guī)則可以減小串的影響,但是很多時候卻難以按照規(guī)則設計,這就會帶來影響的風險。
2022-08-24 09:32:273527

理解Crosstalk

是兩條信號線之間的耦合、信號線之間的互感和互容引起線上的噪聲。容性耦合引發(fā)耦合電流,而感性耦合引發(fā)耦合電壓。PCB板層的參數(shù)、信號線間距、驅動端和接收端的電氣特性及線端接方式對都有一定的影響。也可以理解為感應噪聲。
2022-09-14 09:49:553781

過孔的問題

在硬件系統(tǒng)設計中,通常我們關注的主要發(fā)生在連接器、芯片封裝和間距比較近的平行走線之間。但在某些設計中,高速差分過孔之間也會產生較大的,本文對高速差分過孔之間的產生的情況提供了實例仿真分析和解決方法。
2022-11-07 11:20:352558

高速差分過孔間的 差分過孔間的仿真分析

假設差分端口D1—D4是芯片的接收端,我們通過觀察D5、D7、D8端口對D2端口的遠端來分析相鄰通道的情況。
2022-11-11 12:28:191477

是怎么形成的呢?

發(fā)生在信號的邊沿時,其作用效果類似于影響了信號的傳播時間,比如下圖所示,有3根信號線,前兩根等時傳播,第三根信號線在邊沿時收到了,看起來信號傳播的時間被改變了
2022-12-12 11:01:211912

什么是近端與遠端?

關于兩個公式,我們不需要去記住,我們只需要知道它告訴了我們什么:攻擊信號的幅值影響著的大小;減小串的途徑就是減小信號之間的耦合,增加信號與其回流平面之間的耦合。
2023-01-24 16:28:005755

EMC基礎:何謂

和噪聲等的影響,但尤其是兩根線平行的情況下,會因存在于線間的雜散(寄生)電容和互感而引發(fā)干擾。所以,也可以理解為感應噪聲。
2023-02-15 16:12:001562

使用電感降低噪聲的注意點:、GND線反彈噪聲

這之前作為使用電感的降噪對策,介紹了電感和鐵氧體磁珠、共模濾波器。本文將主要介紹PCB板布局相關的注意事項。是因電路板布線間的雜散電容和互感,噪聲與相鄰的其他電路板布線耦合,這在“何謂”中已經介紹過。
2023-02-15 16:12:052138

什么是?如何減少?

是 PCB 的走線之間產生的不需要的噪聲 (電磁耦合)。
2023-05-22 09:54:245605

技術資訊 | 移動通信中的同頻干擾和

關鍵要點是在移動通信系統(tǒng)的一個頻道上傳輸?shù)男盘枌α硪粋€頻道產生不希望的影響的現(xiàn)象。蜂窩網絡中較多的頻率復用,會引發(fā)同頻干擾并導致。隨著使用相同頻率基站之間的距離增加,移動通信中由于頻率重用
2022-07-18 17:38:485157

信號的原理、實例以及實現(xiàn)步驟

是一種信號干擾現(xiàn)象,表現(xiàn)為一根信號線上有信號通過時,由于兩個相鄰導體之間所形成的互感和互容,導致在印制電路板上與之相鄰線的信號線就會感應相關的信號,稱之為。
2023-07-03 15:45:105328

的類型,產生的原因?

當信號通過電纜發(fā)送時,它們面臨兩個主要的通信影響因素:EMI和。EMI和嚴重影響信噪比。通過容易產生EMI 和的電纜發(fā)送關鍵數(shù)據(jù)是有風險的。下面,讓我們來看看這兩個問題。
2023-07-06 10:07:033408

如何減少PCB設計中的問題 PCB的機制和原因

是 PCB 的走線之間產生的不需要的噪聲(電磁耦合)。
2023-07-20 09:57:083937

PCB設計中,如何避免

空間中耦合的電磁場可以提取為無數(shù)耦合電容和耦合電感的集合,其中由耦合電容產生的信號在受害網絡上可以分成前向串擾和反向Sc,這個兩個信號極性相同;由耦合電感產生的信號也分成前向串擾和反向SL,這兩個信號極性相反。
2023-08-21 14:26:46700

pcb上的高速信號需要仿真

pcb上的高速信號需要仿真嗎? 在數(shù)字電子產品中,高速信號被廣泛應用于芯片內部和芯片間的數(shù)據(jù)傳輸。這些信號通常具有高帶寬,并且需要在特定的時間內準確地傳輸數(shù)據(jù)。然而,在高速信號傳輸?shù)倪^程中,會出
2023-09-05 15:42:311458

PCB布線減少高頻信號的措施都有哪些?

一站式PCBA智造廠家今天為大家講講pcb設計布線解決信號的方法有哪些?PCB設計布線解決信號的方法。信號之間由于電磁場的相互而產生的不期望的噪聲電壓信號稱為信號。超出一定的值將可
2023-10-19 09:51:442514

Allegro SI分析.zip

AllegroSI分析
2022-12-30 09:19:290

什么是?NEXT近端定義介紹

雙絞線的就是其中一個線對被相鄰的線對的信號進來所干擾就是。本身是消除不了的,但只要控制在標準所要求以內就不會對網絡傳輸產生大的影響。
2023-11-01 10:10:372314

如何減少PCB板內的

如何減少PCB板內的
2023-11-24 17:13:431382

哪些原因會導致 BGA ?

哪些原因會導致 BGA ?
2023-11-27 16:05:131121

什么是?該如何處理它?

什么是?該如何處理它?
2023-12-05 16:39:271589

什么是crosstalk?它是如何產生的?

是芯片后端設計中非常普遍的現(xiàn)象,它會造成邏輯信號的預期之外的變化。消除的影響是后端的一個重要課題。
2023-12-06 15:38:192340

怎么樣抑制PCB設計中的

空間中耦合的電磁場可以提取為無數(shù)耦合電容和耦合電感的集合,其中由耦合電容產生的信號在受害網絡上可以分成前向串擾和反向Sc,這個兩個信號極性相同;由耦合電感產生的信號也分成前向串擾和反向SL,這兩個信號極性相反。
2023-12-28 16:14:19718

如何使用SigXplorer進行的仿真

(Crosstalk)是信號完整性(SignalIntegrity)中的核心問題之一,尤其在當今的高密度電路板設計中,其影響愈發(fā)顯著。當電路板上的走線密度增大時,各線路間的電磁耦合增強,
2024-01-06 08:12:223925

減少的方法有哪些

是PCB(Printed Circuit Board)中走線之間產生的不需要的噪聲(電磁耦合)。會對時鐘信號、周期和控制信號、數(shù)據(jù)傳輸線以及I/O產生不利影響。無法完全消除,但可以通過
2024-01-17 15:02:123261

在PCB設計中,如何避免?

在PCB設計中,如何避免? 在PCB設計中,避免是至關重要的,因為可能導致信號失真、噪聲干擾及功能故障等問題。 一、了解及其原因 在開始討論避免的方法之前,我們首先需要
2024-02-02 15:40:302902

嵌入式開發(fā)中引起的原因是什么?

電路布線常會有的風險,最后簡單說明幾個減小串的方法,常見增大走線間距、使兩導體的有風險的區(qū)域最小化、相鄰層走線時傳輸線互相彼此垂直、降低板材介電常數(shù)(確保阻抗控制)、內層布線(減小遠程)... 等。
2024-03-07 09:30:572437

M9航空接口3芯如何減少

德索工程師說道要減少M9航空接口3芯的,首先需要深入了解產生的原因。通常是由于電磁耦合、電容耦合和互感耦合等效應引起的。在航空電氣系統(tǒng)中,這些效應可能由于接口設計不合理、布線不當、屏蔽措施不到位等因素而加劇。
2024-04-26 16:11:37942

已全部加載完成