數(shù)據(jù)采集系統(tǒng)硬件結構如圖2所示, 主要包括以下幾個模塊: 微控制器、電源模塊、電流及安時檢測模塊、瓦時檢測模塊、電壓檢測模塊以及通信接口電路。

圖2 硬件結構圖
微控制器采用的是MC9S12DT128B 芯片, 該芯片具有串行接口、CAN 控制器等豐富的外圍資源,只需加入電平轉換電路即可實現(xiàn)與上位機之間的232通信。本設計使用數(shù)字溫度傳感器DS18B20來實現(xiàn)溫度檢測, 它支持1- w ire總線協(xié)議, 可利用單片機的一個端口來讀取多個檢測點的數(shù)字化溫度信息, 擴展方便。
電壓檢測采用bq76PL536 芯片, 它同時檢測3到6節(jié)電池, 測量的單只電池的電壓范圍為1~ 5V。
該芯片由所測電池直接供電, 供電電壓范圍為5. 5~ 30V。為了保證芯片在所測電池少于3 節(jié)時仍能正常工作, 電路中外接9V 的直流電源。在電池總電壓小于9V 時, 采用外部供電。該芯片具有電池過電壓, 欠電壓保護功能, 電壓閾值及檢測延遲時間這些保護參數(shù)可通過程序寫入。當某節(jié)電池的實際情況超過設定的安全閾值范圍時, 芯片中電池故障寄存器相應字節(jié)置位, 從而通知充電機動作, 防止電池過充或過放。在芯片外圍, 有MOS管與電阻構成的均衡電路, 芯片的CBx管腳可以控制MOS管的導通與關斷, 如圖3所示。通過軟件設置, 當程序判斷出某節(jié)電池需要均衡時, 該電池對應的CBx 管腳被置位, 這時與CBx 相連接的MOS管導通, 均衡電路啟動。

圖3 均衡電路
CS5460A 芯片能夠精確檢測和計算有功電能、瞬時功率、IRM S和VRM S, 本系統(tǒng)用兩片CS5460 分別檢測電流、安時和瓦時。其中一片CS5460 采用分壓電阻檢測電壓, 分流器檢測電流, 通過軟件設置,它在每秒鐘內對電壓、電流信號采樣4000次, 并計算出瞬時功率。通過4000次功率的累計, 芯片可自行計算出這一秒鐘內的能量值, 即?? 瓦時 。另外一片CS5460將通過電壓測量通道測量恒壓源信號,電流測量通道測量分流器信號, 這樣測得的數(shù)值為電流與時間的積分, 即電池電量的計量單位?? 安時 , 可用于SOC 的計算。
4 系統(tǒng)軟件設計
數(shù)據(jù)采集系統(tǒng)軟件分為主程序、電流檢測及安時檢測、瓦時檢測、電壓檢測、溫度檢測以及RS232程序。系統(tǒng)上電后, 主程序開始運行。首先進行系統(tǒng)初始化, 之后進入主循環(huán), 然后循環(huán)調用其他子程序模塊, 完成各個參數(shù)的采集、通訊等功能。
上位機監(jiān)控軟件在VC + + 6. 0 編程環(huán)境下完成, 整個應用程序采用模塊化和結構化模式: 各個程序模塊分別設計, 然后用最小的接口組合起來, 控制明確地從一個程序模塊轉移到下一個模塊。該監(jiān)控系統(tǒng)包括:
數(shù)據(jù)顯示: 實時顯示電池數(shù)據(jù)采集系統(tǒng)所檢測到的電池總電壓、單體電壓、電流、充放電總容量、充放電總能量、溫度等信息, 將接收到的數(shù)據(jù)按時間先后順序存儲到access形式的數(shù)據(jù)庫中。讀取已存儲的access庫, 以列表的形式在界面上顯示數(shù)據(jù)。
參數(shù)設置及校準: 在數(shù)據(jù)采集系統(tǒng)上電后, 通過RS232接口和PC 之間的通訊, 根據(jù)事先設定的通信協(xié)議, 對電池的信息進行修改, 或對芯片進行軟件校準等。
數(shù)據(jù)處理: 分析收到的電壓、溫度數(shù)據(jù), 計算出最高、最低電壓/溫度, 及其位置信息, 并實時顯示。
另外數(shù)據(jù)采集系統(tǒng)已實現(xiàn)電池容量變化的實時計算, 但實際應用場合, 通過電流積分來進行SOC 估算存在累計誤差, 所以需要定期修正。在上位機程序中, 有預留的模塊添加用于SOC 修正的代碼。在進行SOC 估算的實驗時, 可根據(jù)實時收到的電池相關參數(shù), 結合程序事先設置好的修正方法, 實現(xiàn)SOC在線估算。
充放電設備控制: 在上位機程序中有預留的模塊用于添加充放電設備的控制程序, 使電池的電壓、溫度、充放電容量、充放電能量等相關參數(shù)都能參與電池的充放電控制和管理。在電池充放電過程中,上位機分析收到的電池狀態(tài)和信息, 同時判斷電池組中所有電池是否發(fā)生過充電、過放電或過溫, 由于充放電設備與上位機之間存在CAN 通信, 會及時按照上位機的程序指令動作。這種控制模式可以方便的用于電池組充放電策略的研究, 上位機按照預先設定好的控制策略計算出充放電設備的電壓、電流控制值, 并發(fā)送給充放電設備使其動作。同時這種控制模式也可以模擬電動汽車的實際運行情況, 提高了充放電設備的智能化水平, 簡化了充電工作人員設置充電參數(shù)等繁瑣的工作, 使得充電機具有了更好的適應性, 充電機只需要得到上位機提供的指令就能實現(xiàn)安全充電。
用戶評論
共 0 條評論