隨著數(shù)據(jù)傳輸速率的快速增加,從而使得以前微秒(us)量級的邊沿或保持時間減少到納秒(ns)甚至皮秒(ps)。如此高的帶寬需求使得傳統(tǒng)的設(shè)計解決方案已經(jīng)很難滿足系統(tǒng)正常工作的需求。另外,隨著集成電路的工藝發(fā)展使得集成度越來越高,導(dǎo)致芯片上電流密度急速增加,使信號完整性的問題更加嚴(yán)重。因此非常有必要從整個系統(tǒng)設(shè)計開始就考慮信號完整性與電源完整性的問題。這就需要在設(shè)計前后把信號完整性和電源完整性仿真引入到設(shè)計流程中。
信號完整性和電源完整性產(chǎn)品設(shè)計的各個階段都需要考慮。是德科技在信號完整性和電源完整性領(lǐng)域提供了一套整體的解決方案,包括芯片建模、板級仿真、系統(tǒng)仿真以及產(chǎn)品研發(fā)和生產(chǎn)的測試,如下圖1所示:
圖1是德科技信號完整性和電源完整性流程
芯片的建模和系統(tǒng)級的仿真主要使用SystemVue。在信號完整性和電源完整性方面,主要應(yīng)用ADS和EMPro。因為ADS中有豐富的模型、操作的靈活性以及對外部的模型也有非常好的兼容性,所以ADS應(yīng)用于信號完整性和電源完整性前仿真和后仿真中。接下來,給大家介紹下ADS在信號完整性和電源完整性仿真方面的應(yīng)用。
不管是在信號完整性中,還是電源完整性中,對于很多器件,包括芯片的封裝、傳輸線、過孔、連接器、線纜、電容等無源器件都會應(yīng)用S參數(shù)來表征其特性,對于一個完整的通道就需要對很多個S參數(shù)進行級聯(lián),在ADS中可以非常方便的級聯(lián)各類S參數(shù),并非常靈活的進行S參數(shù)仿真以及數(shù)據(jù)的處理,如下圖2是對多個S參數(shù)的級聯(lián)仿真:

圖2 S參數(shù)仿真拓?fù)浣Y(jié)構(gòu)
對于單一的S參數(shù),可以在ADS中直接通過S參數(shù)查看器,檢查S參數(shù)的單端和混合模式的結(jié)果,如下圖3所示,在S參數(shù)查看器中,還可以檢查S參數(shù)的無源性、互易性、相位以及Smith圖。

圖3S參數(shù)查看器
通過S參數(shù)仿真之后,在數(shù)據(jù)顯示窗口,可以查看結(jié)果曲線,也可以進一步處理數(shù)據(jù),加入規(guī)范模板等等。圖4是仿真完成后處理S參數(shù)仿真結(jié)果:

圖4 S參數(shù)仿真結(jié)果顯示
在高速電路中,阻抗匹配非常重要,阻抗不匹配會導(dǎo)致信號的反射、波形非單調(diào)、誤碼率增加等等,所以在進行高速電路設(shè)計之初,工程師都會考慮使用微帶線、帶狀線還是共面波導(dǎo)結(jié)構(gòu),并設(shè)計一些特定的阻抗類型的傳輸線,比如單端50ohm、差分85ohm或者100ohm等等。在ADS中采用CILD(Controlled Impedance Line Designer)可以快速的計算傳輸線的阻抗,并且可以對層疊結(jié)構(gòu)、傳輸線參數(shù)、材料參數(shù)等掃描優(yōu)化,獲得目標(biāo)參數(shù),如下圖5所示,左圖為計算50ohm的單端傳輸線,右圖為通過優(yōu)化差分對的線間距,獲得90ohm差分線設(shè)計參數(shù)。

圖5阻抗計算
在現(xiàn)代電子產(chǎn)品追求小而精的狀況下,串?dāng)_是每一位工程師必須面對的問題。如何設(shè)計可以使串?dāng)_最小且不增加成本,是工程師們的追求。在進行PCB設(shè)計之前,都可以通過ADS進行串?dāng)_仿真,以獲得最優(yōu)的設(shè)計,特別是在設(shè)計之初,可以對影響串?dāng)_的每一個參數(shù)進行掃描仿真,選擇最合適的設(shè)計值,如下圖6所示為對耦合長度進行掃描仿真的原理圖和仿真結(jié)果:

圖6串?dāng)_仿真
從上圖的結(jié)果中在500mil~1500mil之間,近端串?dāng)_隨著耦合長度的增加而增加,在1500mil之后,近端串?dāng)_達到飽和值。這只是一個粗略值的仿真,如果需要獲得更精確的結(jié)果,可以進一步的減小仿真的范圍。工程師也可以在ADS SIPro中對完成的PCB進行串?dāng)_的仿真,這樣可以更進一步的對設(shè)計進行評估。
在高速串行信號鏈路中,基本上都會涉及到過孔的設(shè)計。過孔設(shè)計是高速串行鏈路設(shè)計的一個關(guān)鍵點,關(guān)系到高速串行鏈路設(shè)計的成敗。工程師可以通過ADS Via Designer工具對過孔進行優(yōu)化設(shè)計,如下圖7所示:

圖7 Via Designer
通過Via Designer仿真之后,可以查看過孔損耗和阻抗的特性,并輸出S參數(shù)模型以及3D結(jié)構(gòu)模型,這些模型也可以直接應(yīng)用在傳輸鏈路仿真中,如下圖8所示:

圖8過孔模型應(yīng)用在串行通道仿真中
不管是計算機系統(tǒng)還是嵌入式系統(tǒng),目前都大規(guī)模的采用了DDR3或者DDR4。不論是DDR3還是DDR4,其信號和電源系統(tǒng)的設(shè)計都是一個難點,所以不管是前仿真還是后仿真,都需要進行詳細(xì)的仿真。在ADS中,工程師可以通過兩種方式進行DDR3/4總線的仿真,一種是瞬態(tài)仿真,如下圖9所示;一種是DDR Bus總線仿真,如下圖10所示。通過仿真,可以優(yōu)化、確定DDR總線的布線拓?fù)浣Y(jié)構(gòu)、端接電阻以及ODT的選擇等等。

圖9 DDR3--瞬態(tài)仿真

圖10 DDR4--DDR Bus仿真
對于高速串行總線,通常對誤碼率有比較嚴(yán)苛的要求,要求誤碼率非常低,這才符合總線規(guī)范的要求,所以在不管是仿真還是測試,都需要有足夠多的采樣點數(shù)或者特殊的數(shù)學(xué)算法才能滿足分析誤碼率的要求。另外,隨著信號速率的不斷提高,單純依靠芯片簡單的驅(qū)動能力無法應(yīng)對信號在傳遞過程中的衰減,所以在高速串行總線的芯片中就會增加加重和均衡的算法,對于仿真而言,也需要有新的分析方法,這就需要使用ADS中的通道仿真(ChannelSim),如下圖11所示為一個通道仿真的拓?fù)浣Y(jié)構(gòu),其中包含了發(fā)送端和接收端的芯片模型、傳輸通道上的傳輸線以及連接器以及串?dāng)_通道和串?dāng)_源。芯片的模型采用的是IBIS-AMI模型。

圖11 通道仿真拓?fù)浣Y(jié)構(gòu)
仿真完成之后,在數(shù)據(jù)顯示窗口上查看波形、浴盆曲線、眼圖等結(jié)果。如下圖12所示:

圖12 通道仿真結(jié)果
在信號完整性前仿真中,工程師不僅僅可以分析既定的一些情況,還可以針對一些不確定的情況做一些統(tǒng)計分析、良率的分析,比如,分析傳輸線長度、線寬、介電常數(shù)、介質(zhì)損耗角等參數(shù)對通道的插入損耗和回波損耗的影響。圖13為良率分析的拓?fù)浣Y(jié)構(gòu)和分析結(jié)果:

圖13 良率分析
前面介紹了前仿真,主要是針對原理圖階段的仿真,目的是驗證原理圖設(shè)計以及給PCB設(shè)計提供約束規(guī)則。那么當(dāng)PCB設(shè)計完成之后,還需要進行后仿真,這時需要把設(shè)計好的PCB文件導(dǎo)入到ADS中,然后再通過SIPro和PIPro進行信號完整性和電源完整性的后仿真,仿真完之后,獲得結(jié)果;也可以把仿真的結(jié)果或者提取的模型導(dǎo)出到ADS原理圖頁面,做進一步的仿真。具體流程如下圖14所示:

圖14 后仿真流程
在ADS SIPro中進行信號完整性的后仿真可以獲得S參數(shù)模型,同時可以查看信號網(wǎng)絡(luò)的阻抗,并能導(dǎo)出S參數(shù)模型,如下圖15和圖16所示:
圖15 SIPro中PCB仿真圖

圖16 SIPro仿真后的S參數(shù)和阻抗曲線
在ADS PIPro中可以進行電源完整性的直流壓降仿真(PI DC)、直流電熱聯(lián)合仿真(Electro-Thermal)、熱仿真(Thermal)、交流阻抗仿真(PI AC)和平面諧振仿真(Power Plan Resonance)。如下圖17為直流壓降仿真結(jié)果,圖18為交流阻抗仿真結(jié)果。

圖17 直流壓降仿真結(jié)果

圖18 PDN阻抗仿真結(jié)果
在PIPro中還可以對不滿足PDN阻抗要求的設(shè)計進行去耦電容自動優(yōu)化,通過對不同的電容組合、電容種類進行自動分析,找到一種最合適的設(shè)計。也可以把PDN的S參數(shù)提取之后導(dǎo)出到ADS原理圖中,在原理圖中也可以進行優(yōu)化仿真分析。
當(dāng)然,也可以在前仿真中對電源完整性進行仿真,這樣可以對電容的組合進行優(yōu)化。在ADS原理圖中建立相應(yīng)的拓?fù)浣Y(jié)構(gòu),如下圖19所示:

圖19 電容阻抗仿真
在信號完整性仿真階段,EMPro也是不可或缺的工具,特別是對于一些比較復(fù)雜的結(jié)構(gòu),比如具有芯片封裝、連接器、線纜的互連通道,就需要使用EMPro進行電磁模型的提取。如下圖20所示EMPro中進行芯片封裝的仿真:
圖20 芯片封裝仿真
隨著技術(shù)的發(fā)展,信號完整性和電源完整性設(shè)計和仿真也變得更加的復(fù)雜,這對工具的要求也越來越高。比如近幾年比較熱門的PAM4,雖然這個仿真依然使用的是通道仿真技術(shù),但是其所需要的仿真激勵源已經(jīng)變得更加的復(fù)雜。所幸的是,是德科技也持續(xù)的在研發(fā)新的技術(shù),利用ADS2017可以非常方便的對PAM4進行仿真。

總之,不管是信號完整性和電源完整性的前仿真還是后仿真,或者,不管是板級的仿真還是系統(tǒng)的仿真,是德科技都能提供一套非常系統(tǒng)的解決方案(ADS+EMPro+SystemVue)。
-
信號完整性
+關(guān)注
關(guān)注
68文章
1475瀏覽量
97838 -
電源完整性
+關(guān)注
關(guān)注
9文章
223瀏覽量
21852 -
ADS1220
+關(guān)注
關(guān)注
24文章
488瀏覽量
126300
原文標(biāo)題:ADS在高速電路設(shè)計&信號完整性中的應(yīng)用
文章出處:【微信號:SI_PI_EMC,微信公眾號:信號完整性】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
了解信號完整性的基本原理
Samtec虎家大咖說 | 淺談信號完整性以及電源完整性
電源完整性基礎(chǔ)知識
信號完整性測試基礎(chǔ)知識
電源完整性分析及其應(yīng)用
普源DHO3000系列示波器電源完整性測試
技術(shù)資訊 | 信號完整性測試基礎(chǔ)知識
電源完整性理論基礎(chǔ)
iic協(xié)議的信號完整性測試
電子線路信號完整性設(shè)計規(guī)則
是德示波器在電源完整性分析中的應(yīng)用

ADS的信號完整性和電源完整性仿真應(yīng)用方案
評論