chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

電子發(fā)燒友App

硬聲App

掃碼添加小助手

加入工程師交流群

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>MEMS/傳感技術(shù)>硅光子賦能量子計(jì)算和光神經(jīng)網(wǎng)絡(luò),助飛計(jì)算新時(shí)代

硅光子賦能量子計(jì)算和光神經(jīng)網(wǎng)絡(luò),助飛計(jì)算新時(shí)代

收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦
熱點(diǎn)推薦

首枚光子神經(jīng)形態(tài)芯片問(wèn)世 有望開啟光子計(jì)算產(chǎn)業(yè)

據(jù)科技日?qǐng)?bào)11月21日消息,普林斯頓大學(xué)亞力山大·泰特團(tuán)隊(duì)的新成果是利用光子解決了神經(jīng)網(wǎng)絡(luò)電路速度受限這一難題。神經(jīng)網(wǎng)絡(luò)電路已在計(jì)算領(lǐng)域掀起風(fēng)暴??茖W(xué)家希望制造出更強(qiáng)大的神經(jīng)網(wǎng)絡(luò)電路,其關(guān)鍵在于
2016-11-23 14:57:171094

張量計(jì)算神經(jīng)網(wǎng)絡(luò)加速器中的實(shí)現(xiàn)形式

引言 神經(jīng)網(wǎng)絡(luò)中涉及到大量的張量運(yùn)算,比如卷積,矩陣乘法,向量點(diǎn)乘,求和等。神經(jīng)網(wǎng)絡(luò)加速器就是針對(duì)張量運(yùn)算來(lái)設(shè)計(jì)的。一個(gè)神經(jīng)網(wǎng)絡(luò)加速器通常都包含一個(gè)張量計(jì)算陣列,以及數(shù)據(jù)收發(fā)控制,共同來(lái)完成諸如矩陣
2020-11-02 13:52:513649

如何通過(guò)改進(jìn)計(jì)算核心架構(gòu)提高神經(jīng)網(wǎng)絡(luò)內(nèi)存和算力需求

計(jì)算核心(compute core)是所有計(jì)算機(jī)架構(gòu)的“心臟”,而Cerebras針對(duì)神經(jīng)網(wǎng)絡(luò)的細(xì)粒度動(dòng)態(tài)稀疏性重新設(shè)計(jì)了計(jì)算核心。
2022-10-11 15:01:571548

神經(jīng)網(wǎng)絡(luò)基本介紹

神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

  第1章 概述  1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展  1.2 生物神經(jīng)元  1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成  第2章人工神經(jīng)網(wǎng)絡(luò)基本模型  2.1 MP模型  2.2 感知器模型  2.3 自適應(yīng)線性
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)移植到STM32的方法

神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
2022-01-11 06:20:53

神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介

神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介
2012-08-05 21:01:08

神經(jīng)網(wǎng)絡(luò)資料

基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05

計(jì)算機(jī)視覺神經(jīng)網(wǎng)絡(luò)資料全集

CV之YOLOv3:深度學(xué)習(xí)之計(jì)算機(jī)視覺神經(jīng)網(wǎng)絡(luò)Yolov3-5clessses訓(xùn)練自己的數(shù)據(jù)集全程記錄(第二次)——Jason niu
2018-12-24 11:52:25

量子計(jì)算與通訊經(jīng)典理論基礎(chǔ)則四 光子量子理論

本帖最后由 ygpotsyyz 于 2020-7-20 09:07 編輯 量子計(jì)算與通訊經(jīng)典理論基礎(chǔ)則四 光子量子理論光子量子理論,又一則經(jīng)典(待續(xù))為理解量子計(jì)算和通訊
2020-07-20 08:27:22

量子是個(gè)啥?量子計(jì)算機(jī)有啥用?

寫在前面此文覺得非常有邏輯性,而且有很多量子計(jì)算方面的常識(shí)介紹。大部分資料都是網(wǎng)絡(luò)公開的,這里做了一個(gè)匯集。因此,轉(zhuǎn)發(fā)到博客里。文章目錄(一)量子是個(gè)啥?(二)各種量子技術(shù)都是啥?(三)量子計(jì)算機(jī)有
2021-07-27 07:19:03

AI 邊緣計(jì)算網(wǎng)關(guān):開啟智能新時(shí)代的鑰匙?—龍興物聯(lián)

智能化決策的關(guān)鍵。卷積神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別方面表現(xiàn)卓越,在智能工廠產(chǎn)品質(zhì)量檢測(cè)中,能快速準(zhǔn)確識(shí)別產(chǎn)品缺陷;循環(huán)神經(jīng)網(wǎng)絡(luò)擅長(zhǎng)處理時(shí)間序列數(shù)據(jù),可對(duì)設(shè)備故障進(jìn)行精準(zhǔn)預(yù)測(cè)。 在通信技術(shù)與協(xié)議支持上,AI 邊緣
2025-08-09 16:40:54

AI知識(shí)科普 | 從無(wú)人相信到萬(wàn)人追捧的神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò)的發(fā)展可以追溯到二戰(zhàn)時(shí)期,那時(shí)候先輩們正想著如何用人類的方式去存儲(chǔ)和處理信息,于是他們開始構(gòu)建計(jì)算系統(tǒng)。由于當(dāng)時(shí)計(jì)算機(jī)機(jī)器和技術(shù)的發(fā)展限制,這一技術(shù)并沒(méi)有得到廣泛的關(guān)注和應(yīng)用。幾十年來(lái)
2018-06-05 10:11:50

MATLAB神經(jīng)網(wǎng)絡(luò)

MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13

labview BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)

請(qǐng)問(wèn):我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒(méi)有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08

【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)

學(xué)習(xí)和認(rèn)知科學(xué)領(lǐng)域,是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動(dòng)物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型,用于對(duì)函數(shù)進(jìn)行估計(jì)或近似。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進(jìn)行計(jì)算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)
2019-03-03 22:10:19

【《計(jì)算》閱讀體驗(yàn)】量子計(jì)算

鑒于本書敘述內(nèi)容著實(shí)很豐富,帶有科普性質(zhì)。這里選擇感興趣也是當(dāng)前科技前沿的量子計(jì)算進(jìn)行閱讀學(xué)習(xí)分享。 量子計(jì)算機(jī)操作的是量子比特,可以基于量子的特性大幅提升并行計(jì)算能力,從而其被公認(rèn)為具備了超越
2024-07-13 22:15:52

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺不是很難,只不過(guò)一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競(jìng)爭(zhēng)學(xué)習(xí)的一個(gè)代表,競(jìng)爭(zhēng)型學(xué)習(xí)
2019-07-21 04:30:00

【案例分享】基于BP算法的前饋神經(jīng)網(wǎng)絡(luò)

}或o koko_{k})的誤差神經(jīng)元偏倚的變化量:ΔΘ ΔΘ Delta Theta=學(xué)習(xí)步長(zhǎng)η ηeta × ×imes 乘以神經(jīng)元的誤差BP神經(jīng)網(wǎng)絡(luò)算法過(guò)程網(wǎng)絡(luò)的初始化:包括權(quán)重和偏倚的初始化計(jì)算
2019-07-21 04:00:00

人工神經(jīng)網(wǎng)絡(luò)原理及下載

這個(gè)網(wǎng)絡(luò)輸入和相應(yīng)的輸出來(lái)“訓(xùn)練”這個(gè)網(wǎng)絡(luò)網(wǎng)絡(luò)根據(jù)輸入和輸出不斷地調(diào)節(jié)自己的各節(jié)點(diǎn)之間的權(quán)值來(lái)滿足輸入和輸出。這樣,當(dāng)訓(xùn)練結(jié)束后,我們給定一個(gè)輸入,網(wǎng)絡(luò)便會(huì)根據(jù)自己已調(diào)節(jié)好的權(quán)值計(jì)算出一個(gè)輸出。這就是神經(jīng)網(wǎng)絡(luò)的簡(jiǎn)單原理。  神經(jīng)網(wǎng)絡(luò)原理下載-免費(fèi)
2008-06-19 14:40:42

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問(wèn)題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問(wèn)題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

分析了目前的特殊模型結(jié)構(gòu),最后總結(jié)并討論了卷積神經(jīng)網(wǎng)絡(luò)在相關(guān)領(lǐng)域的應(yīng)用,并對(duì)未來(lái)的研究方向進(jìn)行展望。卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural network,CNN) 在計(jì)算機(jī)視覺[1-
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過(guò)對(duì)系統(tǒng)性能的學(xué)習(xí)來(lái)實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問(wèn)題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13

基于帶NNIE神經(jīng)網(wǎng)絡(luò)海思3559A方案邊緣計(jì)算主板開發(fā)及接口定義

(4GB/8GB可選) ,eMMC(8GB/16GB/32GB/64GB/128GB可選)-雙核NNIE@840MHz 神經(jīng)網(wǎng)絡(luò)加速引擎-四核 DSP@700MHz,32K I-Cache /32K
2020-06-20 11:32:14

如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)

如何用stm32cube.ai簡(jiǎn)化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)
2021-10-11 08:05:42

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測(cè)能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測(cè)
2021-07-12 08:02:11

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡(jiǎn)稱,是當(dāng)前的研究熱點(diǎn)之一。人腦在接受視覺感官傳來(lái)的大量圖像信息后,能迅速做出反應(yīng)
2019-08-08 06:11:30

如何采用神經(jīng)網(wǎng)絡(luò)技術(shù),對(duì)鎳鉻-鎳熱電偶進(jìn)行了非線性校正?

請(qǐng)問(wèn)如何采用基于虛擬儀器編程語(yǔ)言CVI編成的BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練儀對(duì)K型鎳鉻-鎳熱電偶的非線性進(jìn)行校正?
2021-04-08 06:55:26

容差模擬電路軟故障診斷的小波與量子神經(jīng)網(wǎng)絡(luò)方法設(shè)計(jì)

能力是無(wú)法解決的。而量子神經(jīng)網(wǎng)絡(luò)被認(rèn)為是一種具有固有模糊性的網(wǎng)絡(luò),它的隱層單元采用多量子能級(jí)變換函數(shù),每個(gè)多能級(jí)變換函數(shù)是一系列具有量子間隔偏移的S型函數(shù)之和,能將決策的不確定性數(shù)據(jù)合理地分配到各類故障
2019-07-05 08:06:02

嵌入式中的人工神經(jīng)網(wǎng)絡(luò)的相關(guān)資料分享

人工神經(jīng)網(wǎng)絡(luò)在AI中具有舉足輕重的地位,除了找到最好的神經(jīng)網(wǎng)絡(luò)模型和訓(xùn)練數(shù)據(jù)集之外,人工神經(jīng)網(wǎng)絡(luò)的另一個(gè)挑戰(zhàn)是如何在嵌入式設(shè)備上實(shí)現(xiàn)它,同時(shí)優(yōu)化性能和功率效率。 使用云計(jì)算并不總是一個(gè)選項(xiàng),尤其是當(dāng)
2021-11-09 08:06:27

有關(guān)脈沖神經(jīng)網(wǎng)絡(luò)的基本知識(shí)

譯者|VincentLee來(lái)源 |曉的算法工程筆記脈沖神經(jīng)網(wǎng)絡(luò)(Spiking neural network, SNN)將脈沖神經(jīng)元作為計(jì)算單...
2021-07-26 06:23:59

求助基于labview的神經(jīng)網(wǎng)絡(luò)pid控制

小女子做基于labview的蒸發(fā)過(guò)程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請(qǐng)問(wèn)這個(gè)控制方法可以嗎?有誰(shuí)會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16

求助大神關(guān)于神經(jīng)網(wǎng)絡(luò)的問(wèn)題

求助大神 小的現(xiàn)在有個(gè)難題: 一組車重實(shí)時(shí)數(shù)據(jù) 對(duì)應(yīng)一個(gè)車重的最終數(shù)值(一個(gè)一維數(shù)組輸入對(duì)應(yīng)輸出一個(gè)數(shù)值) 這其中可能經(jīng)過(guò)均值、方差、去掉N個(gè)最大值、、、等等的計(jì)算 我的目的就是弄清楚這個(gè)中間計(jì)算過(guò)程 最近實(shí)在想不出什么好辦法就打算試試神經(jīng)網(wǎng)絡(luò) 請(qǐng)教大神用什么神經(jīng)網(wǎng)絡(luò)好求神經(jīng)網(wǎng)絡(luò)程序
2016-07-14 13:35:44

美科學(xué)家建新設(shè)備將光束變固體 可用于研制量子計(jì)算機(jī)

備也將在回答與原子和分子有關(guān)的問(wèn)題方面大展拳腳,就目前的情況而言,即使使用現(xiàn)在最先進(jìn)的計(jì)算機(jī),也都無(wú)法回答這些問(wèn)題?! ∧壳?b class="flag-6" style="color: red">計(jì)算機(jī)的工作原理為經(jīng)典力學(xué),而原子和光子的“言行舉止”則遵循量子
2014-09-28 10:34:27

輕量化神經(jīng)網(wǎng)絡(luò)的相關(guān)資料下載

視覺任務(wù)中,并取得了巨大成功。然而,由于存儲(chǔ)空間和功耗的限制,神經(jīng)網(wǎng)絡(luò)模型在嵌入式設(shè)備上的存儲(chǔ)與計(jì)算仍然是一個(gè)巨大的挑戰(zhàn)。前面幾篇介紹了如何在嵌入式AI芯片上部署神經(jīng)網(wǎng)絡(luò):【嵌入式AI開發(fā)】篇五|實(shí)戰(zhàn)篇一:STM32cubeIDE上部署神經(jīng)網(wǎng)絡(luò)之pytorch搭建指紋識(shí)別模型.onnx...
2021-12-14 07:35:25

非局部神經(jīng)網(wǎng)絡(luò),打造未來(lái)神經(jīng)網(wǎng)絡(luò)基本組件

`將非局部計(jì)算作為獲取長(zhǎng)時(shí)記憶的通用模塊,提高神經(jīng)網(wǎng)絡(luò)性能在深度神經(jīng)網(wǎng)絡(luò)中,獲取長(zhǎng)時(shí)記憶(long-range dependency)至關(guān)重要。對(duì)于序列數(shù)據(jù)(例如語(yǔ)音、語(yǔ)言),遞歸運(yùn)算
2018-11-12 14:52:50

基于量子門組單元的神經(jīng)網(wǎng)絡(luò)及其應(yīng)用

摘要:  以通用量子門組(即相移門和受控非門) 作為基本的計(jì)算單元,構(gòu)造出全新的量子神經(jīng)元模型,并由此組成前饋型結(jié)構(gòu)網(wǎng)絡(luò). 仿真結(jié)果表明,就文中算例而言,該量子神經(jīng)網(wǎng)絡(luò)計(jì)算
2010-08-17 10:23:1715

神經(jīng)網(wǎng)絡(luò)技術(shù)在計(jì)算機(jī)網(wǎng)絡(luò)通信中的應(yīng)用

神經(jīng)網(wǎng)絡(luò)技術(shù)在計(jì)算機(jī)網(wǎng)絡(luò)通信中的應(yīng)用,下來(lái)看看
2016-07-20 16:51:5113

神經(jīng)計(jì)算量子推廣_解

神經(jīng)計(jì)算量子計(jì)算的結(jié)合點(diǎn)
2016-12-24 23:51:500

基于BP神經(jīng)網(wǎng)絡(luò)的汽車起重機(jī)工作幅度計(jì)算_黃皓軒

基于BP神經(jīng)網(wǎng)絡(luò)的汽車起重機(jī)工作幅度計(jì)算_黃皓軒
2017-03-19 11:33:111

NIST科研人員研制出可模擬神經(jīng)網(wǎng)絡(luò)芯片

美國(guó)國(guó)家標(biāo)準(zhǔn)技術(shù)研究院(NIST)的科研人員研制出一種芯片,可精確模擬神經(jīng)網(wǎng)絡(luò)。
2018-08-21 15:50:033994

實(shí)現(xiàn)模擬量子系統(tǒng)的人工智能神經(jīng)網(wǎng)絡(luò)

研究人員利用基于神經(jīng)網(wǎng)絡(luò)的新算法,成功模擬了量子系統(tǒng)的“穩(wěn)態(tài)”。利用神經(jīng)網(wǎng)絡(luò)估計(jì)并模擬波函數(shù)和密度矩陣,大大降低了計(jì)算復(fù)雜度和算力需求,為解決量子科學(xué)和信息領(lǐng)域的幾個(gè)突出問(wèn)題打下了基礎(chǔ)。
2019-07-08 10:03:091046

Imagination 的神經(jīng)網(wǎng)絡(luò)加速器在邊緣計(jì)算領(lǐng)域的應(yīng)用

神經(jīng)網(wǎng)絡(luò)加速能端側(cè)智能
2019-08-08 10:59:515233

卷積神經(jīng)網(wǎng)絡(luò)的感受野計(jì)算

在卷積神經(jīng)網(wǎng)絡(luò)中,感受野是一個(gè)非常重要的概念,今天,我們具體來(lái)看一下感受野的相關(guān)概念以及如何計(jì)算感受野。
2019-08-30 15:19:006808

fireflyNCC S1神經(jīng)網(wǎng)絡(luò)計(jì)算卡介紹

Firefly神經(jīng)網(wǎng)絡(luò)計(jì)算卡是Firefly推出的,配合Firefly開發(fā)板使用的NPU(Neural Processing Unit)模塊。模塊搭載GTI(全稱Gyrfalcon
2019-11-18 14:36:582549

借助神經(jīng)網(wǎng)絡(luò)來(lái)擴(kuò)大量子計(jì)算機(jī)的應(yīng)用規(guī)模

迄今為止,量子計(jì)算機(jī)的應(yīng)用仍相對(duì)有限,但研究人員正在努力嘗試擴(kuò)大其規(guī)模?;?b class="flag-6" style="color: red">硅量子位的可容錯(cuò)量子計(jì)算機(jī)體系結(jié)構(gòu)的一種構(gòu)建方法,是將單個(gè)磷原子放置在 2D 網(wǎng)格上。
2020-03-20 14:32:342446

利用神經(jīng)網(wǎng)絡(luò)來(lái)查明量子計(jì)算機(jī)中的量子點(diǎn)位

迄今為止,量子計(jì)算機(jī)的應(yīng)用仍相對(duì)有限,但研究人員正在努力嘗試擴(kuò)大其規(guī)模?;?b class="flag-6" style="color: red">硅量子位的可容錯(cuò)量子計(jì)算機(jī)體系結(jié)構(gòu)的一種構(gòu)建方法,是將單個(gè)磷原子放置在 2D 網(wǎng)格上。
2020-03-20 15:27:162589

邊緣計(jì)算中深度神經(jīng)網(wǎng)絡(luò)剪枝壓縮的研究

深度神經(jīng)網(wǎng)絡(luò)與其他很多機(jī)器學(xué)習(xí)模型一樣,可分為訓(xùn)練和推理兩個(gè)階段。訓(xùn)練階段根據(jù)數(shù)據(jù)學(xué)習(xí)模型中的參數(shù)(對(duì)神經(jīng)網(wǎng)絡(luò)來(lái)說(shuō)主要是網(wǎng)絡(luò)中的權(quán)重);推理階段將新數(shù)據(jù)輸入模型,經(jīng)過(guò)計(jì)算得出結(jié)果。
2020-03-27 15:50:173571

闡述點(diǎn)亮智能光子光子神經(jīng)網(wǎng)絡(luò)

近年來(lái),以神經(jīng)網(wǎng)絡(luò)為代表的人工智能技術(shù)快速發(fā)展。2017年,采用了神經(jīng)網(wǎng)絡(luò)的AlphaGo依次戰(zhàn)勝了人類頂尖圍棋選手李世石和柯潔,展現(xiàn)了人工智能強(qiáng)大的學(xué)習(xí)和計(jì)算能力,揭開了新一代人工智能的序幕。人工智能技術(shù)正向著高速低功耗的方向快速發(fā)展。
2020-07-28 10:14:102691

谷歌向神經(jīng)網(wǎng)絡(luò)手寫數(shù)字識(shí)別發(fā)起挑戰(zhàn),竟用量子計(jì)算識(shí)別

神經(jīng)網(wǎng)絡(luò)做 MNIST 手寫數(shù)字識(shí)別是機(jī)器學(xué)習(xí)小白用來(lái)練手的入門項(xiàng)目,業(yè)內(nèi)最佳準(zhǔn)確率已經(jīng)達(dá)到了 99.84%。但最近,谷歌向這個(gè)「古老」的數(shù)據(jù)集發(fā)起了一項(xiàng)新的挑戰(zhàn):用量子計(jì)算來(lái)進(jìn)行識(shí)別,看看準(zhǔn)確率能達(dá)到多少。
2020-08-17 17:17:142248

Lightmatter推出Mars芯片 用光執(zhí)行神經(jīng)網(wǎng)絡(luò)計(jì)算

多年來(lái),電氣工程師和計(jì)算機(jī)科學(xué)家一直在努力尋找如何更快,更有效地執(zhí)行神經(jīng)網(wǎng)絡(luò)計(jì)算的方法。實(shí)際上,設(shè)計(jì)適合神經(jīng)網(wǎng)絡(luò)計(jì)算的加速器最近已經(jīng)成為活躍的溫床,最常見的解決方案是GPU,它與各種特定于應(yīng)用的IC
2020-09-12 11:55:163151

量子計(jì)算初創(chuàng)公司Xanadu首次在云端公開了光子量子計(jì)算機(jī)

基于光子學(xué)的量子計(jì)算機(jī)相對(duì)于基于電子的量子計(jì)算機(jī)具有關(guān)鍵的優(yōu)勢(shì)。為了從這些優(yōu)勢(shì)中獲益,量子計(jì)算初創(chuàng)公司Xanadu首次在云端公開了光子量子計(jì)算機(jī)。 傳統(tǒng)的計(jì)算機(jī)打開或關(guān)閉晶體管來(lái)將數(shù)據(jù)符號(hào)化為1和0
2020-10-14 14:39:354348

不同神經(jīng)網(wǎng)絡(luò)量子態(tài)的最新進(jìn)展以及面臨的挑戰(zhàn)

摘要???神經(jīng)網(wǎng)絡(luò)量子態(tài)是由人工神經(jīng)網(wǎng)絡(luò)所表示的量子態(tài)。得益于機(jī)器學(xué)習(xí),尤其是深度學(xué)習(xí)近年來(lái)取得的突破性進(jìn)展,神經(jīng)網(wǎng)絡(luò)量子態(tài)的研究得到了廣泛的關(guān)注,成為當(dāng)前的熱點(diǎn)前沿方向。文章將介紹不同的神經(jīng)網(wǎng)絡(luò)
2021-03-02 09:56:453759

關(guān)于新型光子量子芯片,對(duì)光子計(jì)算機(jī)的發(fā)展與優(yōu)缺點(diǎn)   

與基于電子的機(jī)器相比,基于光子量子計(jì)算機(jī)可能具有一些優(yōu)勢(shì),包括在室溫下運(yùn)行,并且運(yùn)行時(shí)的溫度遠(yuǎn)比普通計(jì)算機(jī)低。量子計(jì)算初創(chuàng)公司Xanadu的科學(xué)家說(shuō),現(xiàn)在,量子計(jì)算機(jī)又增加了一個(gè)優(yōu)勢(shì)。他們的光子量子計(jì)算機(jī)可以擴(kuò)大規(guī)模,甚至可以勝過(guò)最快的經(jīng)典超級(jí)計(jì)算機(jī),至少可以完成某些任務(wù)。
2021-03-07 10:54:3414762

人工神經(jīng)網(wǎng)絡(luò)控制

神經(jīng)網(wǎng)絡(luò)控制,即基于神經(jīng)網(wǎng)絡(luò)控制或簡(jiǎn)稱神經(jīng)控制,是指在控制系統(tǒng)中采用神經(jīng)網(wǎng)絡(luò)這一工具對(duì)難以精確描述的復(fù)雜的非線性對(duì)象進(jìn)行建模,或充當(dāng)控制器,或優(yōu)化計(jì)算,或進(jìn)行推理,或故障診斷等,亦即同時(shí)兼有上述某些
2021-05-27 15:02:1113

基于神經(jīng)網(wǎng)絡(luò)的優(yōu)化計(jì)算實(shí)驗(yàn)

掌握連續(xù)Hopfield神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和運(yùn)行機(jī)制,理解連續(xù)Hopfield神經(jīng)網(wǎng)絡(luò)用于優(yōu)化計(jì)算的基本原理,掌握連續(xù)Hopfield神經(jīng)網(wǎng)絡(luò)用于優(yōu)化計(jì)算的一般步驟。
2021-05-31 17:02:2543

基于進(jìn)化計(jì)算神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)與實(shí)現(xiàn)

基于進(jìn)化計(jì)算神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)與實(shí)現(xiàn)說(shuō)明。
2021-06-01 09:25:114

基于卷積神經(jīng)網(wǎng)絡(luò)的相似度計(jì)算模型

在智能客服問(wèn)答系統(tǒng)中,用戶所提問(wèn)句具有咨詢意圖復(fù)雜、上下文相關(guān)性弱以及口語(yǔ)化等特點(diǎn),導(dǎo)致問(wèn)句相似度計(jì)算的準(zhǔn)確率不高,出現(xiàn)答非所問(wèn)的情況。提出一種基于卷積神經(jīng)網(wǎng)絡(luò)的相似度計(jì)算模型MA-CNN。通過(guò)2個(gè)
2021-06-11 10:59:1619

神經(jīng)網(wǎng)絡(luò)算法三大類 神經(jīng)網(wǎng)絡(luò)用python還是matlab

人工神經(jīng)網(wǎng)絡(luò)簡(jiǎn)稱神經(jīng)網(wǎng)絡(luò),是一種模仿生物神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型,神經(jīng)網(wǎng)絡(luò)一般可以分為以下常用的三大類。
2022-01-03 16:33:0017428

基于光子神經(jīng)網(wǎng)絡(luò)的超高算力密度基集成光子處理器

高算力密度集成光子處理器 此前,人工智能(AI)技術(shù)已在數(shù)據(jù)密集型計(jì)算任務(wù)中得到廣泛應(yīng)用。在后摩爾時(shí)代,為滿足AI算力和能耗的巨大需求,光子神經(jīng)網(wǎng)絡(luò)應(yīng)運(yùn)而生。
2023-02-06 11:11:331007

什么是神經(jīng)網(wǎng)絡(luò)?什么是卷積神經(jīng)網(wǎng)絡(luò)?

在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識(shí)。就目前而言,神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)。
2023-02-23 09:14:444833

光子芯片在神經(jīng)形態(tài)計(jì)算的應(yīng)用

近年來(lái),基于傳統(tǒng)計(jì)算機(jī)的神經(jīng)網(wǎng)絡(luò)計(jì)算受到內(nèi)存限制,已經(jīng)不能滿足計(jì)算速度和能耗的需求。在電子硬件領(lǐng)域,研究人員持續(xù)地進(jìn)行更深入、更復(fù)雜的神經(jīng)網(wǎng)絡(luò)架構(gòu)的研究,通過(guò)硬件方面的創(chuàng)新來(lái)釋放傳統(tǒng)電子系統(tǒng)的潛能
2023-02-23 15:16:314353

卷積神經(jīng)網(wǎng)絡(luò)的硬件轉(zhuǎn)換:什么是機(jī)器學(xué)習(xí)?

轉(zhuǎn)變。與傳統(tǒng)的基于固件的AI計(jì)算相比,以基于硬件的卷積神經(jīng)網(wǎng)絡(luò)加速器為載體的智能邊緣AI計(jì)算具備驚人的速度和強(qiáng)大的算力,開創(chuàng)了計(jì)算性能的新時(shí)代。
2023-06-08 15:15:01579

面向超快機(jī)器視覺的空時(shí)域計(jì)算

? ? ? ? 隨著人工神經(jīng)網(wǎng)絡(luò)應(yīng)用的持續(xù)深化,機(jī)器視覺算法復(fù)雜度劇增,亟需高算力支持。然而,受制于摩爾定律放緩,現(xiàn)有電子計(jì)算性能趨于飽和,難以滿足大規(guī)模智能算法對(duì)算力和能效日益增長(zhǎng)的需求。用光子
2023-06-12 10:07:40829

什么是神經(jīng)網(wǎng)絡(luò)?為什么說(shuō)神經(jīng)網(wǎng)絡(luò)很重要?神經(jīng)網(wǎng)絡(luò)如何工作?

神經(jīng)網(wǎng)絡(luò)是一個(gè)具有相連節(jié)點(diǎn)層的計(jì)算模型,其分層結(jié)構(gòu)與大腦中的神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)相似。神經(jīng)網(wǎng)絡(luò)可通過(guò)數(shù)據(jù)進(jìn)行學(xué)習(xí),因此,可訓(xùn)練其識(shí)別模式、對(duì)數(shù)據(jù)分類和預(yù)測(cè)未來(lái)事件。
2023-07-26 18:28:415380

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

一。其主要應(yīng)用領(lǐng)域在計(jì)算機(jī)視覺和自然語(yǔ)言處理中,最初是由Yann LeCun等人在20世紀(jì)80年代末和90年代初提出的。隨著近年來(lái)計(jì)算機(jī)硬件性能的提升和深度學(xué)習(xí)技術(shù)的發(fā)展,CNN在很多領(lǐng)域取得了重大的進(jìn)展和應(yīng)用。 一、卷積神經(jīng)網(wǎng)絡(luò)模型 (一)卷積層(Convolutional Layer) 卷積神經(jīng)網(wǎng)絡(luò)
2023-08-17 16:30:302214

卷積神經(jīng)網(wǎng)絡(luò)計(jì)算公式

神經(jīng)網(wǎng)絡(luò)計(jì)算公式 神經(jīng)網(wǎng)絡(luò)是一種類似于人腦的神經(jīng)系統(tǒng)的計(jì)算模型,它是一種可以用來(lái)進(jìn)行模式識(shí)別、分類、預(yù)測(cè)等任務(wù)的強(qiáng)大工具。在深度學(xué)習(xí)領(lǐng)域,深度神經(jīng)網(wǎng)絡(luò)已成為最為重要的算法之一。在本文中,我們將重點(diǎn)
2023-08-21 16:49:352761

卷積神經(jīng)網(wǎng)絡(luò)是什么?卷積神經(jīng)網(wǎng)絡(luò)的工作原理和應(yīng)用

  卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),主要用于圖像和視頻的識(shí)別、分類和預(yù)測(cè),是計(jì)算機(jī)視覺領(lǐng)域中應(yīng)用最廣泛的深度學(xué)習(xí)算法之一。該網(wǎng)絡(luò)模型可以自動(dòng)從原始數(shù)據(jù)中學(xué)習(xí)有用的特征,并將其映射到相應(yīng)的類別。
2023-08-21 17:03:463197

卷積神經(jīng)網(wǎng)絡(luò)模型搭建

卷積神經(jīng)網(wǎng)絡(luò)模型搭建 卷積神經(jīng)網(wǎng)絡(luò)模型是一種深度學(xué)習(xí)算法。它已經(jīng)成為了計(jì)算機(jī)視覺和自然語(yǔ)言處理等各種領(lǐng)域的主流算法,具有很大的應(yīng)用前景。本篇文章將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)模型的搭建過(guò)程,為讀者提供一份
2023-08-21 17:11:491592

人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別? 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)是一種模仿人腦神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)和功能的計(jì)算模型,也被稱為神經(jīng)網(wǎng)絡(luò)(Neural
2023-08-22 16:45:186053

構(gòu)建神經(jīng)網(wǎng)絡(luò)模型的常用方法 神經(jīng)網(wǎng)絡(luò)模型的常用算法介紹

神經(jīng)網(wǎng)絡(luò)模型是一種通過(guò)模擬生物神經(jīng)元間相互作用的方式實(shí)現(xiàn)信息處理和學(xué)習(xí)的計(jì)算機(jī)模型。它能夠?qū)斎霐?shù)據(jù)進(jìn)行分類、回歸、預(yù)測(cè)和聚類等任務(wù),已經(jīng)廣泛應(yīng)用于計(jì)算機(jī)視覺、自然語(yǔ)言處理、語(yǔ)音處理等領(lǐng)域。下面將就神經(jīng)網(wǎng)絡(luò)模型的概念和工作原理,構(gòu)建神經(jīng)網(wǎng)絡(luò)模型的常用方法以及神經(jīng)網(wǎng)絡(luò)模型算法介紹進(jìn)行詳細(xì)探討。
2023-08-28 18:25:271524

什么是量子計(jì)算?

什么是量子計(jì)算?量子計(jì)算計(jì)算機(jī)科學(xué)領(lǐng)域中使用量子理論原理的一個(gè)分支。量子理論在原子和亞原子水平上解釋了能量和物質(zhì)的反應(yīng)行為。量子計(jì)算使用亞原子粒子,如電子或光子量子比特(Quantumbits
2023-09-19 10:04:384224

什么是光電量子計(jì)算芯片?

什么是光電量子計(jì)算芯片? 光電量子計(jì)算芯片,也被稱為光子量子計(jì)算芯片,是一種新型的計(jì)算芯片,利用光子來(lái)存儲(chǔ)和處理信息。它的核心原理是基于光子量子疊加性和量子糾纏性質(zhì),通過(guò)精確控制光子攜帶的信息
2024-01-09 14:42:011931

《科技日?qǐng)?bào)》英文版頭版頭條:“本源悟空”開啟中國(guó)量子計(jì)算新時(shí)代

《科技日?qǐng)?bào)》英文版頭版頭條:“本源悟空”開啟中國(guó)量子計(jì)算新時(shí)代
2024-05-19 08:22:541602

人工神經(jīng)網(wǎng)絡(luò)的工作原理是什么

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡(jiǎn)稱ANNs)是一種模擬人腦神經(jīng)網(wǎng)絡(luò)計(jì)算模型,它通過(guò)大量的簡(jiǎn)單計(jì)算單元(神經(jīng)元)和它們之間的連接(突觸)來(lái)實(shí)現(xiàn)對(duì)復(fù)雜數(shù)據(jù)的處理
2024-07-02 10:06:012779

卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

不同的神經(jīng)網(wǎng)絡(luò)模型,它們?cè)诮Y(jié)構(gòu)、原理、應(yīng)用等方面都存在一定的差異。本文將從多個(gè)方面對(duì)這兩種神經(jīng)網(wǎng)絡(luò)進(jìn)行詳細(xì)的比較和分析。 引言 神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)元連接和信息傳遞的計(jì)算模型,它具有強(qiáng)大的非線性擬合能力和泛
2024-07-02 14:24:037112

卷積神經(jīng)網(wǎng)絡(luò)計(jì)算過(guò)程和步驟

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語(yǔ)言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)計(jì)算過(guò)程和步驟
2024-07-03 09:36:301971

bp神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)

Network)有相似之處,但它們之間還是存在一些關(guān)鍵的區(qū)別。 一、引言 神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)元結(jié)構(gòu)的計(jì)算模型,它由大量的神經(jīng)元(或稱為節(jié)點(diǎn))組成,這些神經(jīng)元通過(guò)權(quán)重連接在一起。神經(jīng)網(wǎng)絡(luò)可以用于解決各種復(fù)雜的問(wèn)題,如圖像識(shí)別、自然語(yǔ)言處理、語(yǔ)音識(shí)別等。在神經(jīng)網(wǎng)絡(luò)的研究中,
2024-07-03 10:14:301799

如何使用神經(jīng)網(wǎng)絡(luò)進(jìn)行建模和預(yù)測(cè)

神經(jīng)網(wǎng)絡(luò)是一種強(qiáng)大的機(jī)器學(xué)習(xí)技術(shù),可以用于建模和預(yù)測(cè)變量之間的關(guān)系。 神經(jīng)網(wǎng)絡(luò)的基本概念 神經(jīng)網(wǎng)絡(luò)是一種受人腦啟發(fā)的計(jì)算模型,由大量的節(jié)點(diǎn)(神經(jīng)元)組成,這些節(jié)點(diǎn)通過(guò)權(quán)重連接在一起。每個(gè)神經(jīng)元接收
2024-07-03 10:23:071693

深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指?jìng)鹘y(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時(shí),我們需要從多個(gè)維度進(jìn)行深入分析。這些維度包括網(wǎng)絡(luò)結(jié)構(gòu)、訓(xùn)練機(jī)制、特征學(xué)習(xí)能力、應(yīng)用領(lǐng)域以及計(jì)算資源需求等方面。以下是對(duì)兩者區(qū)別的詳細(xì)闡述。
2024-07-04 13:20:362552

人工神經(jīng)網(wǎng)絡(luò)模型的分類有哪些

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks, ANNs)是一種模擬人腦神經(jīng)元網(wǎng)絡(luò)計(jì)算模型,它在許多領(lǐng)域,如圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理、預(yù)測(cè)分析等有著廣泛的應(yīng)用。本文將
2024-07-05 09:13:553433

簡(jiǎn)述遞歸神經(jīng)網(wǎng)絡(luò)計(jì)算過(guò)程

、時(shí)間序列預(yù)測(cè)等領(lǐng)域有著廣泛的應(yīng)用。本文將詳細(xì)介紹RNN的計(jì)算過(guò)程。 基本概念 1.1 神經(jīng)網(wǎng)絡(luò) 神經(jīng)網(wǎng)絡(luò)是一種受人腦神經(jīng)元結(jié)構(gòu)啟發(fā)的計(jì)算模型,由大量的神經(jīng)元(或稱為節(jié)點(diǎn))組成,這些神經(jīng)元通過(guò)權(quán)重連接在一起。每個(gè)神經(jīng)元接收輸入信號(hào),通過(guò)激活函數(shù)處理信號(hào),并將處
2024-07-05 09:30:381190

什么是神經(jīng)網(wǎng)絡(luò)加速器?它有哪些特點(diǎn)?

神經(jīng)網(wǎng)絡(luò)加速器是一種專門設(shè)計(jì)用于提高神經(jīng)網(wǎng)絡(luò)計(jì)算效率的硬件設(shè)備。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展和廣泛應(yīng)用,神經(jīng)網(wǎng)絡(luò)模型的復(fù)雜度和計(jì)算量急劇增加,對(duì)計(jì)算性能的要求也越來(lái)越高。傳統(tǒng)的通用處理器(CPU
2024-07-11 10:40:591726

神經(jīng)網(wǎng)絡(luò)辨識(shí)模型具有什么特點(diǎn)

,可以對(duì)未知數(shù)據(jù)進(jìn)行預(yù)測(cè),具有很好的泛化能力。 自學(xué)習(xí)能力 :神經(jīng)網(wǎng)絡(luò)通過(guò)反向傳播算法等優(yōu)化算法,可以自動(dòng)調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)自學(xué)習(xí)。 并行處理能力 :神經(jīng)網(wǎng)絡(luò)計(jì)算可以并行進(jìn)行,提高了計(jì)算效率。 容錯(cuò)能力 :神經(jīng)網(wǎng)絡(luò)
2024-07-11 11:12:101212

卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

神經(jīng)網(wǎng)絡(luò),也稱為全連接神經(jīng)網(wǎng)絡(luò)(Fully Connected Neural Networks,F(xiàn)CNs),其特點(diǎn)是每一層的每個(gè)神經(jīng)元都與下一層的所有神經(jīng)元相連。這種結(jié)構(gòu)簡(jiǎn)單直觀,但在處理圖像等高維數(shù)據(jù)時(shí)會(huì)遇到顯著的問(wèn)題,如參數(shù)數(shù)量過(guò)多和計(jì)算復(fù)雜度高。 1.2 卷積神經(jīng)網(wǎng)絡(luò) 卷積神
2024-11-15 14:53:442579

什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

神經(jīng)網(wǎng)絡(luò)(即反向傳播神經(jīng)網(wǎng)絡(luò))的核心,它建立在梯度下降法的基礎(chǔ)上,是一種適合于多層神經(jīng)元網(wǎng)絡(luò)的學(xué)習(xí)算法。該算法通過(guò)計(jì)算每層網(wǎng)絡(luò)的誤差,并將這些誤差反向傳播到前一層,從而調(diào)整權(quán)重,使得網(wǎng)絡(luò)的預(yù)測(cè)更接近真實(shí)值。 二、算法原理 反向傳播算法的基本原理是通過(guò)計(jì)算
2025-02-12 15:18:191424

量子計(jì)算在海綿壓縮測(cè)試數(shù)據(jù)優(yōu)化中的創(chuàng)新探索

試驗(yàn)機(jī)向“超算驅(qū)動(dòng)” 的智能終端演進(jìn)。? 一、量子算法在數(shù)據(jù)建模中的應(yīng)用突破? 量子神經(jīng)網(wǎng)絡(luò)(QNN)的性能提升? 構(gòu)建混合量子 - 經(jīng)典神經(jīng)網(wǎng)絡(luò)架構(gòu),在隱藏層引入量子神經(jīng)元(如 RX 門、CNOT 門組合):? · 利用量子疊加特
2025-04-22 13:05:06767

神經(jīng)網(wǎng)絡(luò)的并行計(jì)算與加速技術(shù)

隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和廣泛的應(yīng)用前景。然而,神經(jīng)網(wǎng)絡(luò)模型的復(fù)雜度和規(guī)模也在不斷增加,這使得傳統(tǒng)的串行計(jì)算方式面臨著巨大的挑戰(zhàn),如計(jì)算速度慢、訓(xùn)練時(shí)間長(zhǎng)等
2025-09-17 13:31:51978

已全部加載完成