小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡pid控制,請問這個控制方法可以嗎?有誰會神經(jīng)網(wǎng)絡pid控制么。。。叩謝
2016-09-23 13:43:16
求助大神 小的現(xiàn)在有個難題: 一組車重實時數(shù)據(jù) 對應一個車重的最終數(shù)值(一個一維數(shù)組輸入對應輸出一個數(shù)值) 這其中可能經(jīng)過均值、方差、去掉N個最大值、、、等等的計算 我的目的就是弄清楚這個中間計算過程 最近實在想不出什么好辦法就打算試試神經(jīng)網(wǎng)絡 請教大神用什么神經(jīng)網(wǎng)絡好求神經(jīng)網(wǎng)絡程序
2016-07-14 13:35:44
求高手,基于labview的BP
神經(jīng)網(wǎng)絡算法的實現(xiàn)過程,最好有程序哈,謝謝?。?/div>
2012-12-10 14:55:50
求大神給一個人工神經(jīng)網(wǎng)絡與遺傳算法的源代碼。
2016-04-19 17:15:29
最簡單的神經(jīng)網(wǎng)絡
2019-09-11 11:57:36
我在matlab中訓練好了一個神經(jīng)網(wǎng)絡模型,想在labview中調(diào)用,請問應該怎么做呢?或者labview有自己的神經(jīng)網(wǎng)絡工具包嗎?
2018-07-05 17:32:32
關于遺傳算法和神經(jīng)網(wǎng)絡的
2013-05-19 10:22:16
根據(jù)神經(jīng)網(wǎng)絡的基本理論,研究了神經(jīng)網(wǎng)絡在電器設備中的應用,提出了神經(jīng)網(wǎng)絡的分塊構造方法和神經(jīng)網(wǎng)絡分塊學習算法,并通過實驗模擬達到實際要求。關鍵詞 神經(jīng)網(wǎng)絡 算法 權
2009-06-13 11:40:03
10 matlab神經(jīng)網(wǎng)絡應用設計詳細的介紹了matlab與神經(jīng)網(wǎng)絡的結合
2016-02-23 10:47:44
0 《matlab神經(jīng)網(wǎng)絡應用設計》電子資料下載
2018-01-13 10:07:25
0 BP 神經(jīng)網(wǎng)絡是一類基于誤差逆向傳播 (BackPropagation, 簡稱 BP) 算法的多層前饋神經(jīng)網(wǎng)絡,BP算法是迄今最成功的神經(jīng)網(wǎng)絡學習算法?,F(xiàn)實任務中使用神經(jīng)網(wǎng)絡時,大多是在使用 BP
2018-06-19 15:17:15
45171 
神經(jīng)網(wǎng)絡一般可以分為以下常用的三大類:CNN(卷積神經(jīng)網(wǎng)絡)、RNN(循環(huán)神經(jīng)網(wǎng)絡)、Transformer(注意力機制)。
2022-12-12 14:48:43
7045 在介紹卷積神經(jīng)網(wǎng)絡之前,我們先回顧一下神經(jīng)網(wǎng)絡的基本知識。就目前而言,神經(jīng)網(wǎng)絡是深度學習算法的核心,我們所熟知的很多深度學習算法的背后其實都是神經(jīng)網(wǎng)絡。
2023-02-23 09:14:44
4834 有個事情可能會讓初學者驚訝:神經(jīng)網(wǎng)絡模型并不復雜!『神經(jīng)網(wǎng)絡』這個詞讓人覺得很高大上,但實際上神經(jīng)網(wǎng)絡算法要比人們想象的簡單。
這篇文章完全是為新手準備的。我們會通過用Python從頭實現(xiàn)一個神經(jīng)網(wǎng)絡來理解神經(jīng)網(wǎng)絡的原理。本文的脈絡是:
2023-02-27 15:05:34
1200 
有個事情可能會讓初學者驚訝:神經(jīng)網(wǎng)絡模型并不復雜!『神經(jīng)網(wǎng)絡』這個詞讓人覺得很高大上,但實際上神經(jīng)網(wǎng)絡算法要比人們想象的簡單。
這篇文章完全是為新手準備的。我們會通過用Python從頭實現(xiàn)一個神經(jīng)網(wǎng)絡來理解神經(jīng)網(wǎng)絡的原理。本文的脈絡是:
2023-02-27 15:06:13
1095 
有個事情可能會讓初學者驚訝:神經(jīng)網(wǎng)絡模型并不復雜!『神經(jīng)網(wǎng)絡』這個詞讓人覺得很高大上,但實際上神經(jīng)網(wǎng)絡算法要比人們想象的簡單。
這篇文章完全是為新手準備的。我們會通過用Python從頭實現(xiàn)一個神經(jīng)網(wǎng)絡來理解神經(jīng)網(wǎng)絡的原理。本文的脈絡是:
2023-02-27 15:06:18
1280 
有個事情可能會讓初學者驚訝:神經(jīng)網(wǎng)絡模型并不復雜!『神經(jīng)網(wǎng)絡』這個詞讓人覺得很高大上,但實際上神經(jīng)網(wǎng)絡算法要比人們想象的簡單。
這篇文章完全是為新手準備的。我們會通過用Python從頭實現(xiàn)一個神經(jīng)網(wǎng)絡來理解神經(jīng)網(wǎng)絡的原理。本文的脈絡是:
2023-02-27 15:06:21
1219 
在本文中,我們將了解深度神經(jīng)網(wǎng)絡的基礎知識和三個最流行神經(jīng)網(wǎng)絡:多層神經(jīng)網(wǎng)絡(MLP),卷積神經(jīng)網(wǎng)絡(CNN)和遞歸神經(jīng)網(wǎng)絡(RNN)。
2023-05-15 14:19:18
1981 
卷積神經(jīng)網(wǎng)絡原理:卷積神經(jīng)網(wǎng)絡模型和卷積神經(jīng)網(wǎng)絡算法 卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,CNN)是一種基于深度學習的人工神經(jīng)網(wǎng)絡,是深度學習技術的重要應用之
2023-08-17 16:30:30
2217 的卷積操作,將不同層次的特征進行提取,從而通過反向傳播算法不斷優(yōu)化網(wǎng)絡權重,最終實現(xiàn)分類和預測等任務。 在本文中,我們將介紹如何使用Python實現(xiàn)卷積神經(jīng)網(wǎng)絡,并詳細說明每一個步驟及其原理。 第一步:導入必要的庫 在開始編寫代碼前,我們需要先導入一些必要的Python庫。具體如
2023-08-21 16:41:35
1624 卷積神經(jīng)網(wǎng)絡的基本原理 卷積神經(jīng)網(wǎng)絡發(fā)展歷程 卷積神經(jīng)網(wǎng)絡三大特點? 卷積神經(jīng)網(wǎng)絡的基本原理 卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,CNN)是深度學習領域
2023-08-21 16:49:39
3589 卷積神經(jīng)網(wǎng)絡的介紹 什么是卷積神經(jīng)網(wǎng)絡算法 卷積神經(jīng)網(wǎng)絡涉及的關鍵技術 卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,CNN)是一種用于圖像分類、物體識別、語音識別等領域
2023-08-21 16:49:46
2802 卷積神經(jīng)網(wǎng)絡算法是機器算法嗎? 卷積神經(jīng)網(wǎng)絡算法是機器算法的一種,它通常被用于圖像、語音、文本等數(shù)據(jù)的處理和分類。隨著深度學習的興起,卷積神經(jīng)網(wǎng)絡逐漸成為了圖像、語音等領域中最熱門的算法之一。 卷積
2023-08-21 16:49:48
1427 深度神經(jīng)網(wǎng)絡是一種基于神經(jīng)網(wǎng)絡的機器學習算法,其主要特點是由多層神經(jīng)元構成,可以根據(jù)數(shù)據(jù)自動調(diào)整神經(jīng)元之間的權重,從而實現(xiàn)對大規(guī)模數(shù)據(jù)進行預測和分類。卷積神經(jīng)網(wǎng)絡是深度神經(jīng)網(wǎng)絡的一種,主要應用于圖像和視頻處理領域。
2023-08-21 17:07:36
5027 卷積神經(jīng)網(wǎng)絡算法三大類 卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,簡稱CNN)是一種常用的人工神經(jīng)網(wǎng)絡,它的主要應用領域是圖像識別和計算機視覺方面。CNN通過卷積層、池
2023-08-21 16:50:07
1847 卷積神經(jīng)網(wǎng)絡算法代碼matlab 卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,CNN)是一種深度學習網(wǎng)絡模型,其特點是具有卷積層(Convolutional Layer
2023-08-21 16:50:11
1904 神經(jīng)網(wǎng)絡模型是一種通過模擬生物神經(jīng)元間相互作用的方式實現(xiàn)信息處理和學習的計算機模型。它能夠?qū)斎霐?shù)據(jù)進行分類、回歸、預測和聚類等任務,已經(jīng)廣泛應用于計算機視覺、自然語言處理、語音處理等領域。下面將就神經(jīng)網(wǎng)絡模型的概念和工作原理,構建神經(jīng)網(wǎng)絡模型的常用方法以及神經(jīng)網(wǎng)絡模型算法介紹進行詳細探討。
2023-08-28 18:25:27
1525 。 為什么使用Python? Python是一種廣泛使用的高級編程語言,以其易讀性和易用性而聞名。Python擁有強大的庫,如TensorFlow、Keras和PyTorch,這些庫提供了構建和訓練神經(jīng)網(wǎng)絡的工具。 神經(jīng)網(wǎng)絡的基本組件 輸入層 :接收輸入數(shù)據(jù)。 隱藏層 :可以有
2024-07-02 09:58:27
1283 神經(jīng)網(wǎng)絡反向傳播算法(Backpropagation Algorithm)是一種用于訓練多層前饋神經(jīng)網(wǎng)絡的監(jiān)督學習算法。它通過最小化損失函數(shù)來調(diào)整網(wǎng)絡的權重和偏置,從而提高網(wǎng)絡的預測性能。本文將詳細
2024-07-02 14:16:52
1894 BP神經(jīng)網(wǎng)絡算法,即反向傳播(Backpropagation)神經(jīng)網(wǎng)絡算法,是一種多層前饋神經(jīng)網(wǎng)絡,通過反向傳播誤差來訓練網(wǎng)絡權重。BP神經(jīng)網(wǎng)絡算法在許多領域都有廣泛的應用,如圖像識別、語音識別
2024-07-03 09:52:51
1472 結構、原理、應用場景等方面都存在一定的差異。以下是對這兩種神經(jīng)網(wǎng)絡的比較: 基本結構 BP神經(jīng)網(wǎng)絡是一種多層前饋神經(jīng)網(wǎng)絡,由輸入層、隱藏層和輸出層組成。每個神經(jīng)元之間通過權重連接,并通過激活函數(shù)進行非線性轉換。BP神經(jīng)網(wǎng)絡通過反向傳播算法進行訓練,通過調(diào)整權重和偏置來最小化損失函數(shù)。 卷積神經(jīng)網(wǎng)絡
2024-07-03 10:12:47
3381 BP神經(jīng)網(wǎng)絡(Backpropagation Neural Network)是一種常見的前饋神經(jīng)網(wǎng)絡,它使用反向傳播算法來訓練網(wǎng)絡。雖然BP神經(jīng)網(wǎng)絡在某些方面與深度神經(jīng)網(wǎng)絡(Deep Neural
2024-07-03 10:14:30
1801 和訓練神經(jīng)網(wǎng)絡。本文將介紹如何使用MATLAB神經(jīng)網(wǎng)絡工具箱,以及如何解讀神經(jīng)網(wǎng)絡的結果圖。 MATLAB神經(jīng)網(wǎng)絡工具箱簡介 MATLAB神經(jīng)網(wǎng)絡工具箱提供了豐富的神經(jīng)網(wǎng)絡類型和訓練算法,包括前饋神經(jīng)網(wǎng)絡、卷積神經(jīng)網(wǎng)絡、循環(huán)神經(jīng)網(wǎng)絡等。此外,工具箱還提供了多種激活函數(shù)、
2024-07-03 10:34:21
5059 反向傳播神經(jīng)網(wǎng)絡(Backpropagation Neural Network,簡稱BP神經(jīng)網(wǎng)絡)是一種多層前饋神經(jīng)網(wǎng)絡,它通過反向傳播算法來調(diào)整網(wǎng)絡中的權重和偏置,以達到最小化誤差的目的。BP
2024-07-03 11:00:20
1742 BP神經(jīng)網(wǎng)絡算法,即反向傳播神經(jīng)網(wǎng)絡算法,是一種常用的多層前饋神經(jīng)網(wǎng)絡訓練算法。它通過反向傳播誤差來調(diào)整網(wǎng)絡的權重和偏置,從而實現(xiàn)對輸入數(shù)據(jù)的分類或回歸。下面詳細介紹BP神經(jīng)網(wǎng)絡算法的基本流程
2024-07-04 09:47:19
1883 遞歸神經(jīng)網(wǎng)絡(Recurrent Neural Network,簡稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(Recurrent Neural Network,簡稱RNN)實際上是同一個概念,只是不同的翻譯方式
2024-07-04 14:54:59
2077 RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡,而非遞歸神經(jīng)網(wǎng)絡。循環(huán)神經(jīng)網(wǎng)絡是一種具有時間序列特性的神經(jīng)網(wǎng)絡,能夠處理序列數(shù)據(jù),具有記憶功能。以下是關于循環(huán)神經(jīng)網(wǎng)絡的介紹
2024-07-05 09:52:36
1514 Matlab作為一款強大的數(shù)學計算軟件,廣泛應用于科學計算、數(shù)據(jù)分析、算法開發(fā)等領域。其中,Matlab的神經(jīng)網(wǎng)絡工具箱(Neural Network Toolbox)為用戶提供了豐富的函數(shù)和工具
2024-07-08 18:26:20
4699 Matlab的神經(jīng)網(wǎng)絡App是一個強大的工具,可以幫助用戶快速構建、訓練和測試神經(jīng)網(wǎng)絡模型。 神經(jīng)網(wǎng)絡基本概念 神經(jīng)網(wǎng)絡是一種模擬人腦神經(jīng)元網(wǎng)絡的計算模型,由大量的神經(jīng)元(或稱為節(jié)點)通過權重連接
2024-07-09 09:49:52
1159 BP神經(jīng)網(wǎng)絡和人工神經(jīng)網(wǎng)絡(Artificial Neural Networks,簡稱ANNs)之間的關系與區(qū)別,是神經(jīng)網(wǎng)絡領域中一個基礎且重要的話題。本文將從定義、結構、算法、應用及未來發(fā)展等多個方面,詳細闡述BP神經(jīng)網(wǎng)絡與人工神經(jīng)網(wǎng)絡之間的異同,以期為讀者提供一個全面而深入的理解。
2024-07-10 15:20:53
3040 BP神經(jīng)網(wǎng)絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經(jīng)網(wǎng)絡的有效方法。以下是關于BP神經(jīng)網(wǎng)絡的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
2025-02-12 15:18:19
1429
評論