chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

清華、GoogleAI和斯李飛飛團(tuán)隊(duì)提出具有強(qiáng)記憶力的E3D-LSTM網(wǎng)絡(luò)

G5zW_AppDowns ? 來源:陳年麗 ? 2019-08-27 10:39 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

清華大學(xué)、Google AI 和斯坦福大學(xué)李飛飛團(tuán)隊(duì)提出了一種具有強(qiáng)記憶力的 E3D-LSTM 網(wǎng)絡(luò),強(qiáng)化了 LSTM 的長時記憶能力,這為視頻預(yù)測、動作分類等相關(guān)問題提供了新思路,是一項(xiàng)非常具有啟發(fā)性的工作。

如何對時間序列進(jìn)行時空建模及特征抽取,是 RGB 視頻預(yù)測分類,動作識別,姿態(tài)估計等相關(guān)領(lǐng)域的研究熱點(diǎn)。

清華大學(xué)、Google AI 和斯坦福大學(xué)李飛飛團(tuán)隊(duì)提出了一種具有強(qiáng)記憶力的 E3D-LSTM 網(wǎng)絡(luò),用 3D 卷積代替 2D 卷積作為 LSTM 網(wǎng)絡(luò)的基礎(chǔ)計算操作,并加入自注意力機(jī)制,使網(wǎng)絡(luò)能同時兼顧長時和短時信息依賴以及局部時空特征抽取。

這為視頻預(yù)測、動作分類等相關(guān)問題提供了新思路,是一項(xiàng)非常具有啟發(fā)性的工作。

時間序列的時空建模問題

現(xiàn)實(shí)生活中許多數(shù)據(jù)都同時具有時間特征和空間特征,例如人體的運(yùn)動軌跡,連續(xù)幀的視頻等,每個時間點(diǎn)都對應(yīng)一組數(shù)據(jù),而數(shù)據(jù)往往又具有一定的空間特征。因此要在這樣的時間序列數(shù)據(jù)上開展分類,預(yù)測等工作,就必須在時間(temporal)和空間 (spatial) 上對其進(jìn)行建模和特征抽取。

常用的時間建模工具是循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)相關(guān)模型(LSTM 等),由于其特有的門結(jié)構(gòu)設(shè)計,對時間序列特征具有強(qiáng)大的抽取能力,因此被廣泛應(yīng)用于預(yù)測問題并取得了良好的成果,但是 RNN 并不能很好的學(xué)習(xí)到原始特征的高階表示,這不利于對空間信息的提取??臻g建模則當(dāng)屬卷積神經(jīng)網(wǎng)絡(luò)(CNN),其具有強(qiáng)大的空間特征抽取能力,其中3D-CNN又能將卷積核可控范圍擴(kuò)大到時域上,相對于 2D 卷積靈活性更高,能學(xué)習(xí)到更多的運(yùn)動信息(motion 信息),相對于 RNN 則更有利于學(xué)習(xí)到信息的高級表示(層數(shù)越深,信息越高級),是目前動作識別領(lǐng)域的流行方法。當(dāng)然 3D 卷積的時間特征抽取能力并不能和 RNN 媲美。

得益于 3D 卷積和 RNN 在各自領(lǐng)域的成功,如何進(jìn)一步將二者結(jié)合起來使用也成為了研究熱點(diǎn),常見的簡單方法是將二者串聯(lián)堆疊或者并聯(lián)結(jié)合(在圖卷積網(wǎng)絡(luò)出現(xiàn)之前,動作識別領(lǐng)域的最優(yōu)方法就是將 CNN 和 RNN 并聯(lián)),但測試發(fā)現(xiàn)這么做并不能帶來太大的提升,這是因?yàn)槎叩墓ぷ鳈C(jī)制差距太大,簡單的結(jié)合并不能很好的實(shí)現(xiàn)優(yōu)勢互補(bǔ)。本文提出用 3D 卷積代替原始 LSTM 中的門更新操作,使 LSTM 不僅能在時間層面,也能在空間層面上進(jìn)行短期依賴的表象特征和運(yùn)動特征的抽取,從而在更深的機(jī)制層面實(shí)現(xiàn)兩種網(wǎng)絡(luò)的結(jié)合。此外,在 LSTM 中引入自注意力(self-attention)機(jī)制,進(jìn)一步強(qiáng)化了 LSTM 的長時記憶能力,使其對長距離信息作用具有更好的感知力。作者將這種網(wǎng)絡(luò)稱為Eidetic 3D LSTM(E3D-LSTM),Eidetic 意思是具有逼真記憶,強(qiáng)調(diào)網(wǎng)絡(luò)的強(qiáng)記憶能力。

E3D-LSTM 網(wǎng)絡(luò)結(jié)構(gòu)

圖 1:三種不同的 3D 卷積和 LSTM 的結(jié)合方法

圖中每個顏色的模塊都代表了多層相應(yīng)的網(wǎng)絡(luò)。圖(a)和圖(b)是兩種 3D 卷積和 LSTM 結(jié)合的基線方法,3D 卷積和 LSTM 線性疊加,主要起到了編碼(解碼器)的作用,并沒有和 RNN 有機(jī)制上的結(jié)合。圖(a)中 3D 卷積作為編碼器,輸入是一段視頻幀,圖(b)中作為解碼器,得到每個單元的最終輸出。這兩個方法中的綠色模塊使用的是時空長短時記憶網(wǎng)絡(luò)(ST-LSTM)[1],這種 LSTM 獨(dú)立的維護(hù)兩個記憶狀態(tài) M 和 C,但由于記憶狀態(tài) C 的遺忘門過于響應(yīng)具有短期依賴的特征,因此容易忽略長時依賴信息,因此 E3D-LSTM 在 ST-LSTM 的基礎(chǔ)添加了自注意力機(jī)制和 3D 卷積操作,在一定程度上解決了這個問題。具體單元結(jié)構(gòu)下一節(jié)介紹。

圖(c)是 E3D-LSTM 網(wǎng)絡(luò)的結(jié)構(gòu),3D 卷積作為編碼 - 解碼器(藍(lán)色模塊),同時和 LSTM 結(jié)合(橙色模塊)。E3D-LSTM 既可用于分類任務(wù),也可用于預(yù)測任務(wù)。分類時將所有 LSTM 單元的輸出結(jié)合,預(yù)測時則利用 3D 卷積解碼器的輸出作為預(yù)測值。

E3D-LSTM 單元結(jié)構(gòu)設(shè)計

圖 2:標(biāo)準(zhǔn) LSTM 單元結(jié)構(gòu)

首先簡要介紹一下標(biāo)準(zhǔn) LSTM 結(jié)構(gòu),和 RNN 相比 LSTM 增加了更復(fù)雜的門結(jié)構(gòu)(圖中黃色模塊),主要解決 RNN 中存在的梯度消失問題,從而提高網(wǎng)絡(luò)對長時依賴(long-term dependency)的記憶感知能力。LSTM 有兩個輸入門,一個輸出門和遺忘門

圖 2:ST-LSTM 網(wǎng)絡(luò)結(jié)構(gòu)和單元結(jié)構(gòu)

和標(biāo)準(zhǔn) LSTM 相比,ST-LSTM 還增加了不同層間對應(yīng)位置的 cell 連接,如圖 2 左側(cè),水平灰色連接線表示標(biāo)準(zhǔn) LSTM 的單元連接,豎直黃色連接線表示層間同一時刻的單元連接,通過張量 M 傳播,注意當(dāng) l=1 時,

(作者認(rèn)為 t 時刻的頂層信息對 t+1 時刻的底層信息影響很大),這樣記憶信息就能同時在層內(nèi)和層間傳播。

圖 3 E3D-LSTM 單元結(jié)構(gòu)

圖 3 是本文提出的 E3D-LSTM 模型的單元結(jié)構(gòu),

是一個維度為的五維張量,代表之前個時間步的所有隱狀態(tài)。表示召回門(代替遺忘門),和 ST-LSTM 相比,主要有以下改進(jìn):

1、輸入數(shù)據(jù)是的四維張量,對應(yīng)時刻

的連續(xù)幀序列,因此現(xiàn)在每個單元時間步都對應(yīng)一段視頻,而不是單幀視頻。

2、針對幀序列數(shù)據(jù)額外添加了一個召回門(recall gate)以及相關(guān)結(jié)構(gòu),用于實(shí)現(xiàn)長時依賴學(xué)習(xí),也就是自注意力機(jī)制。這部分對應(yīng)網(wǎng)絡(luò)名稱中的 Eidetic。

3、由于輸入數(shù)據(jù)變成了四維張量,因此在更新公式中采用 3D 卷積操作而不是 2D 卷積。

大部分門結(jié)構(gòu)的更新公式和 ST-LSTM 相同,額外添加了召回門更新公式:

上面介紹的機(jī)制用于同一層不同時間步連接,作者將這種機(jī)制也用在了不同層同一時間步的連接,但效果并不好,這是因?yàn)椴煌瑢釉谕粫r刻學(xué)習(xí)到的信息并沒有太好的依賴性。

基于 E3D-LSTM 的半監(jiān)督輔助學(xué)習(xí)

在許多監(jiān)督學(xué)習(xí)任務(wù),例如視頻動作識別中,沒有足夠的監(jiān)督信息和標(biāo)注信息來幫助訓(xùn)練一個令人滿意的 RNN,因此可以將視頻預(yù)測作為一個輔助的表征學(xué)習(xí)方法,來幫助網(wǎng)絡(luò)更好的理解視頻特征,并提高時間域上的監(jiān)督性。

具體的,讓視頻預(yù)測和動作識別任務(wù)共享相同的主干網(wǎng)絡(luò)(圖 1),只不過損失函數(shù)不同,在視頻預(yù)測任務(wù)中,目標(biāo)函數(shù)為:

帶上標(biāo)的 X 表示預(yù)測值,不帶上標(biāo)的表示真值,F(xiàn) 表示 Frobenius 歸一化。

在動作識別任務(wù)中,目標(biāo)函數(shù)為:

其中 Y 和是預(yù)測值和幀值,這樣通過將預(yù)測任務(wù)的損失函數(shù)嵌入到識別任務(wù)中,以及主干網(wǎng)絡(luò)的共享,能在一定程度上幫助識別任務(wù)學(xué)習(xí)到更多的時序信息。為了保證過渡平滑,額外添加了一個權(quán)重因子,會隨著迭代次數(shù)的增加而線性衰減:

作者將這種方法稱為半監(jiān)督輔助學(xué)習(xí)。

實(shí)驗(yàn)結(jié)果

視頻預(yù)測任務(wù),在 Moving MINIST 數(shù)據(jù)集上的結(jié)果:

為了驗(yàn)證 E3D-LSTM 中不同模塊對性能的影響,作者還在該數(shù)據(jù)集上進(jìn)行了燒蝕研究:

可以看到不管是添加 3D 卷積還是自注意力機(jī)制,網(wǎng)絡(luò)性能相對于基線方法都有提升。

視頻預(yù)測任務(wù),在 KTH 人體動作數(shù)據(jù)集上的結(jié)果:

接下來在一個實(shí)際視頻預(yù)測任務(wù):交通流預(yù)測中,與其他方法進(jìn)行了對比:

動作識別任務(wù),在 Something-Something 數(shù)據(jù)集上進(jìn)行了測試:

同樣在該數(shù)據(jù)集上進(jìn)行了燒蝕研究:

以及不同的半監(jiān)督輔助學(xué)習(xí)策略帶來的性能提升:

總結(jié)

本文對 ST-LSTM 進(jìn)行了改進(jìn),將流行的 3D 卷積操作作為其基本張量操作,同時添加了自注意力模塊,進(jìn)一步強(qiáng)化了網(wǎng)絡(luò)對長距離依賴信息的刻畫能力,不僅能用于預(yù)測任務(wù),還能通過輔助學(xué)習(xí)的方法拓展到其他任務(wù)上,是非常具有啟發(fā)性的工作。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:數(shù)月整改,三星折疊屏手機(jī)Fold 終于可以發(fā)售了?

文章出處:【微信號:AppDowns,微信公眾號:掌上科技頻道】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    RNN與LSTM模型的比較分析

    RNN(循環(huán)神經(jīng)網(wǎng)絡(luò))與LSTM(長短期記憶網(wǎng)絡(luò))模型在深度學(xué)習(xí)領(lǐng)域都具有處理序列數(shù)據(jù)的能力,但它們在結(jié)構(gòu)、功能和應(yīng)用上存在顯著的差異。以下
    的頭像 發(fā)表于 11-15 10:05 ?2224次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與其他機(jī)器學(xué)習(xí)算法的比較

    隨著人工智能技術(shù)的飛速發(fā)展,機(jī)器學(xué)習(xí)算法在各個領(lǐng)域中扮演著越來越重要的角色。長短期記憶網(wǎng)絡(luò)LSTM)作為一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),因其在處理序列數(shù)據(jù)方面的優(yōu)勢而受到廣泛關(guān)注。
    的頭像 發(fā)表于 11-13 10:17 ?2143次閱讀

    深度學(xué)習(xí)框架中的LSTM神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)

    長短期記憶LSTM網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),能夠?qū)W習(xí)長期依賴信息。與傳統(tǒng)的RNN相比,LSTM通過引入門控機(jī)制來解決梯度消
    的頭像 發(fā)表于 11-13 10:16 ?1063次閱讀

    基于LSTM神經(jīng)網(wǎng)絡(luò)的情感分析方法

    情感分析是自然語言處理(NLP)領(lǐng)域的一項(xiàng)重要任務(wù),旨在識別和提取文本中的主觀信息,如情感傾向、情感強(qiáng)度等。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,基于LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)的情感分析方法因其出色的序列建模
    的頭像 發(fā)表于 11-13 10:15 ?1274次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)在圖像處理中的應(yīng)用

    長短期記憶LSTM)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長期依賴關(guān)系。雖然LSTM最初是為處理序列數(shù)據(jù)設(shè)計的,但近年來,
    的頭像 發(fā)表于 11-13 10:12 ?1618次閱讀

    如何使用Python構(gòu)建LSTM神經(jīng)網(wǎng)絡(luò)模型

    構(gòu)建一個LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)模型是一個涉及多個步驟的過程。以下是使用Python和Keras庫構(gòu)建LSTM模型的指南。 1. 安裝必要的庫 首先,確保你已經(jīng)安裝了Python
    的頭像 發(fā)表于 11-13 10:10 ?1582次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)準(zhǔn)備方法

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)準(zhǔn)備方法是一個關(guān)鍵步驟,它直接影響到模型的性能和效果。以下是一些關(guān)于LSTM神經(jīng)
    的頭像 發(fā)表于 11-13 10:08 ?2117次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計用于解決長期依賴問題,特別是在處理時間序列數(shù)據(jù)時表現(xiàn)出色。以下是
    的頭像 發(fā)表于 11-13 10:05 ?1631次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)在語音識別中的應(yīng)用實(shí)例

    語音識別技術(shù)是人工智能領(lǐng)域的一個重要分支,它使計算機(jī)能夠理解和處理人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,特別是長短期記憶LSTM)神經(jīng)網(wǎng)絡(luò)的引入,語音識別的準(zhǔn)確性和效率得到了顯著提升。 LSTM
    的頭像 發(fā)表于 11-13 10:03 ?1851次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的調(diào)參技巧

    長短時記憶網(wǎng)絡(luò)(Long Short-Term Memory, LSTM)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長期依賴信息。在實(shí)際應(yīng)用中,
    的頭像 發(fā)表于 11-13 10:01 ?1860次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別

    在深度學(xué)習(xí)領(lǐng)域,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關(guān)注。然而,傳統(tǒng)RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)應(yīng)
    的頭像 發(fā)表于 11-13 09:58 ?1213次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    長短期記憶(Long Short-Term Memory, LSTM)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),由Hochreiter和Schmidhuber在1997年
    的頭像 發(fā)表于 11-13 09:57 ?4825次閱讀

    使用LSTM神經(jīng)網(wǎng)絡(luò)處理自然語言處理任務(wù)

    自然語言處理(NLP)是人工智能領(lǐng)域的一個重要分支,它旨在使計算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,特別是循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體——長短期記憶LSTM網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 09:56 ?1161次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)在時間序列預(yù)測中的應(yīng)用

    時間序列預(yù)測是數(shù)據(jù)分析中的一個重要領(lǐng)域,它涉及到基于歷史數(shù)據(jù)預(yù)測未來值。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,長短期記憶LSTM)神經(jīng)網(wǎng)絡(luò)因其在處理序列數(shù)據(jù)方面的優(yōu)勢而受到廣泛關(guān)注。 LSTM神經(jīng)
    的頭像 發(fā)表于 11-13 09:54 ?2051次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的基本原理 如何實(shí)現(xiàn)LSTM神經(jīng)網(wǎng)絡(luò)

    LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長期依賴信息。在處理序列數(shù)據(jù)時,如時間序列分析、自然語言處理等,LSTM
    的頭像 發(fā)表于 11-13 09:53 ?1583次閱讀