chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

如何從龐大的客戶車隊中獲取訓練數(shù)據(jù),以訓練其自動駕駛神經(jīng)網(wǎng)絡

倩倩 ? 來源:半導體投資聯(lián)盟 ? 2020-04-17 09:36 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

據(jù)外媒Electrek報道,特斯拉于近日申請了一項專利,即如何從龐大的客戶車隊中獲取訓練數(shù)據(jù),以訓練其自動駕駛神經(jīng)網(wǎng)絡。

據(jù)悉,特斯拉人工智能和自動駕駛軟件負責人Andrej Karpathy是該專利的唯一發(fā)明人。Karpathy指出了在應用程序中為深度學習培訓收集數(shù)據(jù)的難點:“用于自動駕駛等應用的深度學習系統(tǒng)是通過訓練機器學習模型來開發(fā)的。通常深度學習系統(tǒng)的性能在一定程度上受制于訓練集的質(zhì)量。在大多數(shù)情況下,在收集、管理和注釋培訓數(shù)據(jù)方面需要投入大量資源,創(chuàng)建訓練集的工作因此很重要且繁瑣。此外,通常很難為機器學習模型需要改進的特定用例收集數(shù)據(jù)?!?/p>

值得一提的是,特斯拉開發(fā)自動駕駛系統(tǒng)的方法與大多數(shù)汽車公司大相徑庭。大多數(shù)汽車公司使用相對較小的測試車輛車隊來收集數(shù)據(jù)和測試其系統(tǒng),而特斯拉則利用配備了一系列傳感器的數(shù)十萬客戶車輛來收集道路和駕駛數(shù)據(jù),并在“陰影模式”下測試自動駕駛系統(tǒng),因此,車隊收集的這些數(shù)據(jù)對于特斯拉訓練神經(jīng)網(wǎng)絡進行自動駕駛是非常有價值的。

Karpathy在專利中提到,“隨著機器學習模型變得越來越復雜,例如更深層次的神經(jīng)網(wǎng)絡,大型訓練數(shù)據(jù)集的必要性也相應增加。與較淺的神經(jīng)網(wǎng)絡相比,這些較深的神經(jīng)網(wǎng)絡可能需要更多的訓練實例,以確保其通用性。”

因此,工程師解釋了其專利方法,即在傳輸潛在培訓數(shù)據(jù)之前,先對數(shù)據(jù)源進行分類。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2566

    文章

    53008

    瀏覽量

    767536
  • 特斯拉
    +關注

    關注

    66

    文章

    6378

    瀏覽量

    129160
  • 機器學習
    +關注

    關注

    66

    文章

    8503

    瀏覽量

    134635
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    無刷電機小波神經(jīng)網(wǎng)絡轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學模型的推導,得出轉(zhuǎn)角:與三相相電壓之間存在映射關系,因此構(gòu)建了一個三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡來實現(xiàn)轉(zhuǎn)角預測,并采用改進遺傳算法來訓練網(wǎng)絡結(jié)
    發(fā)表于 06-25 13:06

    基于FPGA搭建神經(jīng)網(wǎng)絡的步驟解析

    本文的目的是在一個神經(jīng)網(wǎng)絡已經(jīng)通過python或者MATLAB訓練好的神經(jīng)網(wǎng)絡模型,將訓練好的模型的權(quán)重和偏置文件TXT文件格式導出,然后
    的頭像 發(fā)表于 06-03 15:51 ?416次閱讀
    基于FPGA搭建<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的步驟解析

    自動駕駛感知系統(tǒng)卷積神經(jīng)網(wǎng)絡原理的疑點分析

    和語音識別等領域取得了顯著成就,并廣泛用于車輛自動駕駛的圖像目標識別。 1.局部連接:CNN通過局部連接的方式減少了網(wǎng)絡自由參數(shù)的個數(shù),從而降低了計算復雜度,并使網(wǎng)絡更易于
    的頭像 發(fā)表于 04-07 09:15 ?363次閱讀
    <b class='flag-5'>自動駕駛</b>感知系統(tǒng)<b class='flag-5'>中</b>卷積<b class='flag-5'>神經(jīng)網(wǎng)絡</b>原理的疑點分析

    如何優(yōu)化BP神經(jīng)網(wǎng)絡的學習率

    優(yōu)化BP神經(jīng)網(wǎng)絡的學習率是提高模型訓練效率和性能的關鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡學習率的方法: 一、理解學習率的重要性 學習率決定了模型參數(shù)在每次迭代時更新的幅度。過大的學習率可能導致模型在
    的頭像 發(fā)表于 02-12 15:51 ?941次閱讀

    BP神經(jīng)網(wǎng)絡的優(yōu)缺點分析

    自學習能力 : BP神經(jīng)網(wǎng)絡能夠通過訓練數(shù)據(jù)自動調(diào)整網(wǎng)絡參數(shù),實現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務
    的頭像 發(fā)表于 02-12 15:36 ?925次閱讀

    如何訓練BP神經(jīng)網(wǎng)絡模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡是一種經(jīng)典的人工神經(jīng)網(wǎng)絡模型,訓練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓練BP
    的頭像 發(fā)表于 02-12 15:10 ?926次閱讀

    標貝科技:自動駕駛數(shù)據(jù)標注類別分享

    自動駕駛訓練模型的成熟和穩(wěn)定離不開感知技術(shù)的成熟和穩(wěn)定,訓練自動駕駛感知模型需要使用大量準確真實的數(shù)據(jù)。據(jù)英特爾計算,L3+級
    的頭像 發(fā)表于 11-22 15:07 ?2027次閱讀
    標貝科技:<b class='flag-5'>自動駕駛</b><b class='flag-5'>中</b>的<b class='flag-5'>數(shù)據(jù)</b>標注類別分享

    標貝科技:自動駕駛數(shù)據(jù)標注類別分享

    自動駕駛訓練模型的成熟和穩(wěn)定離不開感知技術(shù)的成熟和穩(wěn)定,訓練自動駕駛感知模型需要使用大量準確真實的數(shù)據(jù)。據(jù)英特爾計算,L3+級
    的頭像 發(fā)表于 11-22 14:58 ?3815次閱讀
    標貝科技:<b class='flag-5'>自動駕駛</b><b class='flag-5'>中</b>的<b class='flag-5'>數(shù)據(jù)</b>標注類別分享

    LSTM神經(jīng)網(wǎng)絡訓練數(shù)據(jù)準備方法

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡訓練數(shù)據(jù)準備方法是一個關鍵步驟,它直接影響到模型的性能和效果。以下是一些關于LSTM神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-13 10:08 ?2123次閱讀

    關于卷積神經(jīng)網(wǎng)絡,這些概念你厘清了么~

    取特征的強大工具,例如識別音頻信號或圖像信號的復雜模式就是應用之一。 1、什么是卷積神經(jīng)網(wǎng)絡? 神經(jīng)網(wǎng)絡是一種由神經(jīng)元組成的系統(tǒng)或結(jié)構(gòu)
    發(fā)表于 10-24 13:56

    【飛凌嵌入式OK3576-C開發(fā)板體驗】RKNN神經(jīng)網(wǎng)絡算法開發(fā)環(huán)境搭建

    download_model.sh 腳本,該腳本 將下載一個可用的 YOLOv5 ONNX 模型,并存放在當前 model 目錄下,參考命令如下: 安裝COCO數(shù)據(jù)集,在深度神經(jīng)網(wǎng)絡算法,模型的
    發(fā)表于 10-10 09:28

    FPGA在自動駕駛領域有哪些優(yōu)勢?

    領域的主要優(yōu)勢: 高性能與并行處理能力: FPGA內(nèi)部包含大量的邏輯門和可配置的連接,能夠同時處理多個數(shù)據(jù)流和計算任務。這種并行處理能力使得FPGA在處理自動駕駛復雜的圖像識別、傳感器數(shù)據(jù)
    發(fā)表于 07-29 17:11

    FPGA在自動駕駛領域有哪些應用?

    數(shù)據(jù)處理和預處理,實現(xiàn)實時計算和反饋。 二、數(shù)據(jù)傳輸與處理FPGA在自動駕駛扮演著數(shù)據(jù)傳輸和處理的角色。它能夠支持多種傳感器(如激光雷達
    發(fā)表于 07-29 17:09

    如何構(gòu)建多層神經(jīng)網(wǎng)絡

    構(gòu)建多層神經(jīng)網(wǎng)絡(MLP, Multi-Layer Perceptron)模型是一個在機器學習和深度學習領域廣泛使用的技術(shù),尤其在處理分類和回歸問題時。在本文中,我們將深入探討如何從頭開始構(gòu)建一個多層神經(jīng)網(wǎng)絡模型,包括模型設計、數(shù)據(jù)
    的頭像 發(fā)表于 07-19 17:19 ?1569次閱讀

    Python自動訓練人工神經(jīng)網(wǎng)絡

    人工神經(jīng)網(wǎng)絡(ANN)是機器學習中一種重要的模型,它模仿了人腦神經(jīng)元的工作方式,通過多層節(jié)點(神經(jīng)元)之間的連接和權(quán)重調(diào)整來學習和解決問題。Python由于強大的庫支持(如Tenso
    的頭像 發(fā)表于 07-19 11:54 ?703次閱讀