chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

通用AI與窄AI之間有何不同?

mK5P_AItists ? 來源:The Next Web ? 2020-05-11 15:29 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

1956年,由數(shù)學(xué)系年輕的助理教授John McCarthy領(lǐng)導(dǎo)的科學(xué)家小組齊聚新罕布什爾州的達(dá)特茅斯學(xué)院,計(jì)劃進(jìn)行一個(gè)為期六周且雄心勃勃的項(xiàng)目:創(chuàng)建一種能夠“使用語言、形式抽象與概念,幫助人類解決各類現(xiàn)存問題并自我改善”的計(jì)算機(jī)。

隨著項(xiàng)目帷幕的徐徐開啟,人工智能AI)領(lǐng)域也正式出現(xiàn)在世界之上。當(dāng)時(shí)的科學(xué)家們認(rèn)為,“只需要2個(gè)月時(shí)間加10名研究人員”,就足以解決AI謎團(tuán)中的核心難題。在第一份AI提案中,赫然寫道“只要能組織一批精心挑選的科學(xué)家共同研究一個(gè)夏天,我們就能夠在一個(gè)或者多個(gè)問題上取得重大進(jìn)展?!比欢?jīng)歷了六十多年的探索,真-人工智能的時(shí)代仍然遙遙無期。

我們?nèi)詻]能打造出擁有與人類兒童相近思維與解決問題能力的思考機(jī)器,更遑論成年人。但是,探索的腳步從未停歇,突破也在持續(xù)來臨——時(shí)至今日,人工智能領(lǐng)域已經(jīng)呈現(xiàn)出人工通用智能(AGI)與人工窄智能(ANI)并立的局面。

通用AI與窄AI之間有何不同?

正如McCarthy和他的同事們所設(shè)想,AI代表著一種人工智能系統(tǒng),有能力學(xué)習(xí)任務(wù)并解決問題,且全程無需人類為其明確指示操作細(xì)節(jié)。這類系統(tǒng)需要能夠進(jìn)行推理與抽象,并輕松將已經(jīng)掌握的知識(shí)從一個(gè)領(lǐng)域轉(zhuǎn)移到另一個(gè)領(lǐng)域。

研究人員經(jīng)歷了數(shù)十年攻堅(jiān),并意識(shí)到AI系統(tǒng)確實(shí)很難滿足以上提到的所有條件。而能夠模仿人類思維過程的計(jì)算機(jī)AI這一原始愿景,也被更名為“人工通用智能”。

根據(jù)維基百科的說明,AGI是指“一種能夠理解或?qū)W習(xí)人類方式并完成任意智能任務(wù)的機(jī)器?!蹦壳?,科學(xué)家、研究人員以及意見領(lǐng)袖的普遍觀點(diǎn)是,我們距離真正的AGI至少還有數(shù)十年的發(fā)展歷程。但在實(shí)現(xiàn)這一創(chuàng)造思維機(jī)器夢想的持續(xù)努力當(dāng)中,科學(xué)家們還是設(shè)法發(fā)明出各種實(shí)用的技術(shù)。而窄AI,正是這類技術(shù)的統(tǒng)稱。所謂窄AI,是指那些特別擅長處理單一任務(wù)或者特定范圍內(nèi)工作的系統(tǒng)。在大多數(shù)情況下,它們在特定領(lǐng)域中的表現(xiàn)遠(yuǎn)優(yōu)于人類。

不過一旦它們遇到的問題超過了適用空間,效果則急轉(zhuǎn)直下。換言之,它們無法將自己掌握的知識(shí)從一個(gè)領(lǐng)域轉(zhuǎn)移到另一個(gè)領(lǐng)域。例如,谷歌下轄AI研究實(shí)驗(yàn)室DeepMind開發(fā)的機(jī)器人能夠在即時(shí)戰(zhàn)略游戲《星際爭霸2》當(dāng)中屠殺人類選手;而一旦將對抗平臺(tái)換成《魔獸爭霸》或者《命令與征服》等其他同類游戲,它的競技水平會(huì)立刻下降至智障級(jí)別。

盡管窄AI無法全面執(zhí)行需要人類智能的任務(wù),但在特定場景中仍然非常實(shí)用,而且已經(jīng)在諸多應(yīng)用之內(nèi)發(fā)揮著自己的作用。谷歌搜索查詢現(xiàn)在可以利用窄AI算法回答問題;窄AI系統(tǒng)會(huì)在YouTube及Netflix中推薦用戶可能感興趣的視頻,并在Spotify中按喜好整理出周推音樂列表。事實(shí)上,在大多數(shù)情況下,每當(dāng)我們聽說某家企業(yè)“利用AI解決了某些問題”,或者是在新聞?lì)^條里看到與AI相關(guān)的消息,他們指的都是人工窄智能。

AI技術(shù)的不同類型

目前市面上存在的窄AI技術(shù)可以大體分為兩類:符號(hào)型AI與機(jī)器學(xué)習(xí)。符號(hào)型人工智能(又稱傳統(tǒng)AI,GOFAI)在很長一段歷史時(shí)期中都是學(xué)術(shù)研究的主要領(lǐng)域。符號(hào)型AI要求程序員精心定義規(guī)則,借此引導(dǎo)智能系統(tǒng)的行為,符號(hào)AI適用于那些具備可預(yù)測且規(guī)則明確的應(yīng)用場景。盡管過去幾年當(dāng)中,符號(hào)型AI的關(guān)注熱度有所下降,但我們目前的大部分應(yīng)用程序仍然以這類方案為基礎(chǔ)。

機(jī)器學(xué)習(xí)則屬于窄人工智能的另一分支,通過示例建立起智能系統(tǒng)。機(jī)器學(xué)習(xí)系統(tǒng)的開發(fā)者負(fù)責(zé)創(chuàng)建模型,并為其提供大量示例以完成“訓(xùn)練”過程。機(jī)器學(xué)習(xí)算法將處理這些示例,并建立起通過數(shù)據(jù)中的數(shù)學(xué)表示執(zhí)行預(yù)測與分類任務(wù)的能力。例如,經(jīng)過訓(xùn)練的機(jī)器學(xué)習(xí)算法能夠從成千上萬條銀行交易操作及結(jié)果(包括合法及欺詐行為)中學(xué)習(xí)知識(shí),并據(jù)此預(yù)測新的銀行交易活動(dòng)是否存在欺詐嫌疑。

機(jī)器學(xué)習(xí)一派還包含多種不同風(fēng)格。深度學(xué)習(xí)屬于機(jī)器學(xué)習(xí)內(nèi)的一種特殊類型,并在過去幾年中得到全球各界的關(guān)注。深度學(xué)習(xí)特別擅長執(zhí)行那些數(shù)據(jù)內(nèi)容較為混亂的任務(wù),例如計(jì)算機(jī)視覺與自然語言處理。強(qiáng)化學(xué)習(xí)又是機(jī)器學(xué)習(xí)的另一個(gè)子集,大部分游戲機(jī)器人使用的正是這種窄AI類型。其核心實(shí)質(zhì),在于通過反復(fù)試驗(yàn)嘗試解決問題。我們?yōu)槭裁磿?huì)長期停留在窄AI階段?符號(hào)型AI與機(jī)器學(xué)習(xí)只能各自反映出人類智能中的一個(gè)側(cè)面,但卻無法將各個(gè)必要部分組合起來,共同建立起涵蓋完整人類智能的AI系統(tǒng)。也正因?yàn)槿绱?,我們才長期停留在窄AI階段,再難前進(jìn)一步。符號(hào)操縱是人類思維過程中的重要組成部分。

但是,單靠符號(hào)操縱并不足以反映完整的思維體系。我們會(huì)在童年時(shí)期學(xué)到多種技能(走路、奔跑、系鞋帶、搬運(yùn)、刷牙等等),這些技能徹底融入了我們的血液當(dāng)中——無需任何形式的符號(hào)操縱,我們都能隨時(shí)隨地利用潛意識(shí)將其掌握。符號(hào)AI系統(tǒng)非常脆弱,開發(fā)者需要對其面對的每一項(xiàng)任務(wù)做出精確指導(dǎo),而系統(tǒng)也只能在嚴(yán)格符合定義的規(guī)則范圍之內(nèi)運(yùn)行。在另一方面,機(jī)器學(xué)習(xí)算法則比較擅長模仿那些符號(hào)推理捕捉不到的行為,例如人臉及語音識(shí)別,并通過示例掌握人類熟知的各類技能。在這方面,深度神經(jīng)網(wǎng)絡(luò)(深度學(xué)習(xí)算法中使用的結(jié)構(gòu))表現(xiàn)尤為出色。其能夠攝取大量數(shù)據(jù),并開發(fā)出數(shù)學(xué)模型以表征其中的模式。但同樣的,人類的學(xué)習(xí)過程也并不能簡單概括為純粹的模式匹配。

例如,我們只需要看過幾張小貓的圖像,就能借此識(shí)別出一生當(dāng)中見到過的形形色色的小貓。對人來說,從意識(shí)到什么是貓到準(zhǔn)確識(shí)別出貓是個(gè)一氣呵成的過程,但AI系統(tǒng)還遠(yuǎn)做不到、且必須在學(xué)習(xí)中引入許多符號(hào)操縱因素(貓有四條腿、一根尾巴、體表大多布滿茸毛、長著尖耳朵和三角形的鼻子等等)。符號(hào)操縱的缺失,限制了深度學(xué)習(xí)與其他機(jī)器學(xué)習(xí)算法的功能。深度學(xué)習(xí)算法需要大量數(shù)據(jù),才能達(dá)到人類僅通過極少示例就掌握的任務(wù)執(zhí)行能力。

具體來講,用于計(jì)算機(jī)視覺的卷積神經(jīng)網(wǎng)絡(luò)(CNN)往往需要通過成千上萬張圖像,才能完成對各類對象的識(shí)別訓(xùn)練。即使如此,在遇到新的光照條件或者相同物體的不同呈現(xiàn)角度時(shí),這些模型還是會(huì)快速敗下陣來。諸如AlphaGo、AlphaStar以及OpenAI Five等AI游戲系統(tǒng)必須經(jīng)過數(shù)百萬場比賽或者數(shù)千小時(shí)的訓(xùn)練,才能弄明白某一款游戲究竟該如何操作。

單從訓(xùn)練強(qiáng)度來看,這一數(shù)量已經(jīng)遠(yuǎn)遠(yuǎn)超過任何人(甚至十個(gè)人)一輩子的游戲時(shí)長。機(jī)器學(xué)習(xí)系統(tǒng)還嚴(yán)格受限于訓(xùn)練示例所涉及的上下文范圍,窄AI一詞也正源于此。例如,無人駕駛汽車當(dāng)中使用的計(jì)算機(jī)視覺算法在遇到異常狀況時(shí),例如非正常停放的消防車或翻倒的汽車,很容易做出錯(cuò)誤的決定。

窄AI之后,下一個(gè)時(shí)代是什么?

科學(xué)家們一致認(rèn)為,我們目前擁有的任何AI技術(shù)中都尚不包含人工通用智能的任何必要部分。更要命的是,大家甚至對AI接下來該往何處去都各執(zhí)一詞。

下面來看擴(kuò)展人工窄智能的幾種主流思路:認(rèn)知科學(xué)家Gary Marcus建議應(yīng)該將基于規(guī)則的系統(tǒng)與神經(jīng)網(wǎng)絡(luò)結(jié)合起來,建立起混合型AI系統(tǒng)。

已經(jīng)有部分工作示例表明,神經(jīng)符號(hào)AI系統(tǒng)確實(shí)有望克服窄AI面臨的數(shù)據(jù)約束。Marcus寫道,“建立架構(gòu)的第一步,是將符號(hào)化方法的優(yōu)勢與來自機(jī)器學(xué)習(xí)的洞見相結(jié)合,據(jù)此開發(fā)出更強(qiáng)大的技術(shù),進(jìn)而從充斥著大量噪音信號(hào)的大型數(shù)據(jù)集內(nèi)提取并歸納抽象知識(shí)?!庇?jì)算機(jī)科學(xué)家Richard Sutton合作撰寫過一本關(guān)于強(qiáng)化學(xué)習(xí)技術(shù)的開創(chuàng)性著作,在他看來超越窄AI的解決方案在于進(jìn)一步擴(kuò)展學(xué)習(xí)算法。Sutton認(rèn)為,人工智能行業(yè)的進(jìn)步主要?dú)w功于“單位計(jì)算成本呈指數(shù)下降這一持續(xù)性趨勢”,而非我們真的找到了將人類知識(shí)與推理更好地編碼到計(jì)算機(jī)軟件中的方法。

深度學(xué)習(xí)先驅(qū)Yoshua Bengio在去年的NeurIPS大會(huì)上談到了系統(tǒng)二深度學(xué)習(xí)算法。根據(jù)Bengio的介紹,系統(tǒng)二深度學(xué)習(xí)算法將能夠在無需集成符號(hào)AI元素的前提下,執(zhí)行某種形式的變量運(yùn)算。Bengio指出,“我們希望打造出能夠理解真實(shí)世界的機(jī)器,建立起良好的環(huán)境模型,使其能夠理解因果關(guān)系,并在這樣的真實(shí)環(huán)境下采取行動(dòng)來獲取知識(shí)。”另一位深度學(xué)習(xí)先驅(qū)Yann LeCun在今年的AAAI大會(huì)上談到了自我監(jiān)督學(xué)習(xí)。

自我監(jiān)督學(xué)習(xí)AI應(yīng)該能夠通過觀察世界來學(xué)習(xí),而不再需要大量標(biāo)記數(shù)據(jù)。LeCun在會(huì)上解釋道,“我認(rèn)為自我監(jiān)督學(xué)習(xí)代表著未來。它將讓我們的AI系統(tǒng),特別是深度學(xué)習(xí)系統(tǒng)進(jìn)入一個(gè)新的水平,有望通過觀察來了解關(guān)于這個(gè)真實(shí)世界的背景知識(shí),甚至深化出某種認(rèn)知常識(shí)?!?/p>

我們?nèi)绾闻袛嘧约菏欠窨邕^了窄AI這道“坎”?

目前,人工智能面臨的一大挑戰(zhàn),在于人們總會(huì)為其設(shè)下持續(xù)發(fā)展的目標(biāo)。只要還有問題未得到解決,我們就不能盲目斷言關(guān)于通用智能的宏愿已經(jīng)實(shí)現(xiàn)。而從另一個(gè)角度出發(fā),只要能夠解決所有問題,那么計(jì)算機(jī)就將擁有真正的人工智能。不過其中的悖論在于,對于機(jī)器能夠解決的問題,我們又往往認(rèn)為該問題的解決并不需要智能。這方面的典型例子就是國際象棋,這項(xiàng)棋類運(yùn)動(dòng)曾被視為人工智能領(lǐng)域的試金石,在重要性方面堪比二十世紀(jì)初引發(fā)遺傳研究突破的果蠅基因破譯。但1996年,計(jì)算機(jī)“深藍(lán)”成功在棋盤上擊敗了國際象棋世界冠軍卡斯帕羅夫。

此后,人們開始認(rèn)為國際象棋不足以證明計(jì)算機(jī)是否擁有真正的智能——相反,它是純粹利用計(jì)算能力檢查所有可能的棋步,并選擇其中最有利于取勝的選項(xiàng)。這就在原理層面束縛了AI系統(tǒng)的意義,而且目前在特定任務(wù)中表現(xiàn)出色的窄AI系統(tǒng)(例如在餐廳中接聽預(yù)約電話的聊天機(jī)器人)也存在相同的問題。

窄AI的發(fā)展,從多方面證明了我們原本認(rèn)為必須依靠人類智能解決的問題,實(shí)際上完全可以拆分成數(shù)學(xué)方程式加簡單算法的形式。就在最近,人們開始更多通過更常規(guī)、更具一般性的問題衡量AI系統(tǒng)的能力。這方面,我向大家推薦由Fran?ois Chollet撰寫的《關(guān)于智能的度量(On the Measure of Intelligence)》,這篇論文是這位Keras深度學(xué)習(xí)庫的創(chuàng)造者帶給全人類的又一份寶貴財(cái)富。

在論文中,Chollet探討了如何衡量AI系統(tǒng)在解決未經(jīng)明確訓(xùn)練或指示的問題方面表現(xiàn)出的能力這個(gè)核心議題。在這篇論文中,Chollet提出了抽象推理語料庫(ARC),用于對能力假設(shè)做出一系列提問式檢驗(yàn)。就在今年早些時(shí)候,谷歌組織的數(shù)據(jù)科學(xué)與機(jī)器學(xué)習(xí)競賽平臺(tái)Kaggle也發(fā)起了針對ARC數(shù)據(jù)集的挑戰(zhàn)項(xiàng)目。

雖然問題難度過高,幾乎沒人能在短時(shí)間內(nèi)攻克難關(guān)并拿到資金,但項(xiàng)目的提出仍然給了我們一把衡量AI真實(shí)智能水平的重要標(biāo)尺。從窄AI到能夠與人類相比肩的真-思維機(jī)器,我們到底還有多長的道路要走?這個(gè)問題的解決,同樣是通往人工通用智能的一級(jí)關(guān)鍵基石。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    90

    文章

    38241

    瀏覽量

    297166
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49774

    瀏覽量

    261776

原文標(biāo)題:現(xiàn)在的人工智能只是“窄AI”?

文章出處:【微信號(hào):AItists,微信公眾號(hào):人工智能學(xué)家】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    融合AI的OpenHarmony應(yīng)用軟件開發(fā):ai學(xué)習(xí)自律輔助軟件

    *附件:ai study.zip*附件:融合AI的OpenHarmony應(yīng)用軟件開發(fā):ai學(xué)習(xí)自律輔助軟件.pdf 基于開源鴻蒙編寫的ai輔助學(xué)習(xí)軟件
    發(fā)表于 11-12 15:38

    VS680 HDMI AI分析解決方案 #目標(biāo)識(shí)別 #視頻翻譯 #AI #芯片

    AI
    深蕾半導(dǎo)體
    發(fā)布于 :2025年11月12日 10:29:33

    AI模型的配置AI模型該怎么做?

    STM32可以跑AI,這個(gè)AI模型怎么搞,知識(shí)盲區(qū)
    發(fā)表于 10-14 07:14

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+AI芯片到AGI芯片

    AI大家都很了解了吧;AGI是什么呢? AGI:通用人工智能,可以再各個(gè)應(yīng)用領(lǐng)域都具備AI的處理能力。 AGI可以組成能夠24小時(shí)連續(xù)工作的優(yōu)秀員工隊(duì)伍,他們擁有比人類更強(qiáng)的能力和領(lǐng)導(dǎo)力,能夠
    發(fā)表于 09-18 15:31

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+AI的科學(xué)應(yīng)用

    AI被賦予了人的智能,科學(xué)家們希望在沒有人類的引導(dǎo)下,AI自主的提出科學(xué)假設(shè),諾貝爾獎(jiǎng)級(jí)別的假設(shè)哦。 AI驅(qū)動(dòng)科學(xué)被認(rèn)為是科學(xué)發(fā)現(xiàn)的第五個(gè)范式了,與實(shí)驗(yàn)科學(xué)、理論科學(xué)、計(jì)算科學(xué)、數(shù)據(jù)驅(qū)動(dòng)科學(xué)一起構(gòu)成
    發(fā)表于 09-17 11:45

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+AI芯片的需求和挑戰(zhàn)

    當(dāng)今社會(huì),AI已經(jīng)發(fā)展很迅速了,但是你了解AI的發(fā)展歷程嗎?本章作者將為我們打開AI的發(fā)展歷程以及需求和挑戰(zhàn)的面紗。 從2017年開始生成式AI開創(chuàng)了新的時(shí)代,經(jīng)歷了三次熱潮和兩次低谷
    發(fā)表于 09-12 16:07

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+可期之變:從AI硬件到AI濕件

    的不同。隨著AI熱潮的興起,大腦的抽象模型已被提煉成各種的AI算法,并使用半導(dǎo)體芯片技術(shù)加以實(shí)現(xiàn)。 而大腦是一個(gè)由無數(shù)神經(jīng)元通過突觸連接而成的復(fù)雜網(wǎng)絡(luò),是極其復(fù)雜和精密的。大腦在本質(zhì)上就是一臺(tái)濕潤的軟組織
    發(fā)表于 09-06 19:12

    AI 芯片浪潮下,職場晉升新契機(jī)?

    職場、渴望在專業(yè)領(lǐng)域更進(jìn)一步的人來說,AI 芯片與職稱評(píng)審之間,實(shí)則有著千絲萬縷的聯(lián)系,為職業(yè)晉升開辟了新的路徑。 AI 芯片領(lǐng)域細(xì)分與職稱對應(yīng) 目前,AI 芯片從技術(shù)架構(gòu)上主要分為
    發(fā)表于 08-19 08:58

    大家都在用什么AI軟件?有沒有好用的免費(fèi)的AI軟件推薦一下?

    大家都在用什么AI軟件?有沒有好用的免費(fèi)的AI軟件推薦一下?直接發(fā)個(gè)安裝包,謝謝。比如deepseek、Chatgpt、豆包、阿里AI、百度AI、騰訊
    發(fā)表于 07-09 18:30

    AI岸橋理貨系統(tǒng)高效精準(zhǔn)

    AI
    jf_60141436
    發(fā)布于 :2025年05月30日 11:49:13

    首創(chuàng)開源架構(gòu),天璣AI開發(fā)套件讓端側(cè)AI模型接入得心應(yīng)手

    AI的演進(jìn)正在逼近“終端智能涌現(xiàn)”的拐點(diǎn),從通用模型向場景落地遷移成為關(guān)鍵議題。聯(lián)發(fā)科以“AI隨芯,應(yīng)用無界”為主題召開天璣開發(fā)者大會(huì)2025(MDDC 2025),不僅聚合了全球生態(tài)資源,還
    發(fā)表于 04-13 19:52

    AI 時(shí)代開啟,企業(yè)跟風(fēng)做 AI 產(chǎn)品是明智之舉?

    AI
    華成工控
    發(fā)布于 :2025年04月10日 17:28:44

    AI Agent 應(yīng)用與項(xiàng)目實(shí)戰(zhàn)》----- 學(xué)習(xí)如何開發(fā)視頻應(yīng)用

    再次感謝發(fā)燒友提供的閱讀體驗(yàn)活動(dòng)。本期跟隨《AI Agent 應(yīng)用與項(xiàng)目實(shí)戰(zhàn)》這本書學(xué)習(xí)如何構(gòu)建開發(fā)一個(gè)視頻應(yīng)用。AI Agent是一種智能應(yīng)用,能夠根據(jù)用戶需求和環(huán)境變化做出相應(yīng)響應(yīng)。通?;谏疃?/div>
    發(fā)表于 03-05 19:52