chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度強(qiáng)化學(xué)習(xí)到底是什么?它的工作原理是怎么樣的

Wildesbeast ? 來(lái)源:21IC ? 作者:21IC ? 2020-06-13 11:39 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度學(xué)習(xí)DL是機(jī)器學(xué)習(xí)中一種基于對(duì)數(shù)據(jù)進(jìn)行表征學(xué)習(xí)的方法。深度學(xué)習(xí)DL有監(jiān)督和非監(jiān)督之分,都已經(jīng)得到廣泛的研究和應(yīng)用。強(qiáng)化學(xué)習(xí)RL是通過(guò)對(duì)未知環(huán)境一邊探索一邊建立環(huán)境模型以及學(xué)習(xí)得到一個(gè)最優(yōu)策略。強(qiáng)化學(xué)習(xí)是機(jī)器學(xué)習(xí)中一種快速、高效且不可替代的學(xué)習(xí)算法。

深度強(qiáng)化學(xué)習(xí)DRL自提出以來(lái), 已在理論和應(yīng)用方面均取得了顯著的成果。尤其是谷歌DeepMind團(tuán)隊(duì)基于深度強(qiáng)化學(xué)習(xí)DRL研發(fā)的AlphaGo,將深度強(qiáng)化學(xué)習(xí)DRL成推上新的熱點(diǎn)和高度,成為人工智能歷史上一個(gè)新的里程碑。因此,深度強(qiáng)化學(xué)習(xí)DRL非常值得研究。

深度強(qiáng)化學(xué)習(xí)概念:深度強(qiáng)化學(xué)習(xí)DRL將深度學(xué)習(xí)DL的感知能力和強(qiáng)化學(xué)習(xí)RL的決策能力相結(jié)合, 可以直接根據(jù)輸入的信息進(jìn)行控制,是一種更接近人類(lèi)思維方式的人工智能方法。在與世界的正?;?dòng)過(guò)程中,強(qiáng)化學(xué)習(xí)會(huì)通過(guò)試錯(cuò)法利用獎(jiǎng)勵(lì)來(lái)學(xué)習(xí)。它跟自然學(xué)習(xí)過(guò)程非常相似,而與深度學(xué)習(xí)不同。在強(qiáng)化學(xué)習(xí)中,可以用較少的訓(xùn)練信息,這樣做的優(yōu)勢(shì)是信息更充足,而且不受監(jiān)督者技能限制。

深度強(qiáng)化學(xué)習(xí)DRL是深度學(xué)習(xí)和強(qiáng)化學(xué)習(xí)的結(jié)合。這兩種學(xué)習(xí)方式在很大程度上是正交問(wèn)題,二者結(jié)合得很好。強(qiáng)化學(xué)習(xí)定義了優(yōu)化的目標(biāo),深度學(xué)習(xí)給出了運(yùn)行機(jī)制——表征問(wèn)題的方式以及解決問(wèn)題的方式。將強(qiáng)化學(xué)習(xí)和深度學(xué)習(xí)結(jié)合在一起,尋求一個(gè)能夠解決任何人類(lèi)級(jí)別任務(wù)的代理,得到了能夠解決很多復(fù)雜問(wèn)題的一種能力——通用智能。深度強(qiáng)化學(xué)習(xí)DRL將有助于革新AI領(lǐng)域,它是朝向構(gòu)建對(duì)視覺(jué)世界擁有更高級(jí)理解的自主系統(tǒng)邁出的一步。從某種意義上講,深度強(qiáng)化學(xué)習(xí)DRL是人工智能的未來(lái)。

深度強(qiáng)化學(xué)習(xí)本質(zhì):深度強(qiáng)化學(xué)習(xí)DRL的Autonomous Agent使用強(qiáng)化學(xué)習(xí)的試錯(cuò)算法和累計(jì)獎(jiǎng)勵(lì)函數(shù)來(lái)加速神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)。這些設(shè)計(jì)為很多依靠監(jiān)督/無(wú)監(jiān)督學(xué)習(xí)的人工智能應(yīng)用提供支持。它涉及對(duì)強(qiáng)化學(xué)習(xí)驅(qū)動(dòng)Autonomous Agent的使用,以快速探索與無(wú)數(shù)體系結(jié)構(gòu)、節(jié)點(diǎn)類(lèi)型、連接、超參數(shù)設(shè)置相關(guān)的性能權(quán)衡,以及對(duì)深度學(xué)習(xí)、機(jī)器學(xué)習(xí)和其他人工智能模型設(shè)計(jì)人員可用的其它選擇。

深度強(qiáng)化學(xué)習(xí)原理:深度Q網(wǎng)絡(luò)通過(guò)使用深度學(xué)習(xí)DL和強(qiáng)化學(xué)習(xí)RL兩種技術(shù),來(lái)解決在強(qiáng)化學(xué)習(xí)RL中使用函數(shù)逼近的基本不穩(wěn)定性問(wèn)題:經(jīng)驗(yàn)重放和目標(biāo)網(wǎng)絡(luò)。經(jīng)驗(yàn)重放使得強(qiáng)化學(xué)習(xí)RL智能體能夠從先前觀察到的數(shù)據(jù)離線進(jìn)行抽樣和訓(xùn)練。這不僅大大減少了環(huán)境所需的交互量,而且可以對(duì)一批經(jīng)驗(yàn)進(jìn)行抽樣,減少學(xué)習(xí)更新的差異。此外,通過(guò)從大存儲(chǔ)器均勻采樣,可能對(duì)強(qiáng)化學(xué)習(xí)RL算法產(chǎn)生不利影響的時(shí)間相關(guān)性被打破了。最后,從實(shí)際的角度看,可以通過(guò)現(xiàn)代硬件并行地高效地處理批量的數(shù)據(jù),從而提高吞吐量。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1807

    文章

    49029

    瀏覽量

    249647
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8503

    瀏覽量

    134646
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122805
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    NVIDIA Isaac Lab可用環(huán)境與強(qiáng)化學(xué)習(xí)腳本使用指南

    Lab 是一個(gè)適用于機(jī)器人學(xué)習(xí)的開(kāi)源模塊化框架,其模塊化高保真仿真適用于各種訓(xùn)練環(huán)境,Isaac Lab 同時(shí)支持模仿學(xué)習(xí)(模仿人類(lèi))和強(qiáng)化學(xué)習(xí)(在嘗試和錯(cuò)誤中進(jìn)行學(xué)習(xí)),為所有機(jī)器
    的頭像 發(fā)表于 07-14 15:29 ?577次閱讀
    NVIDIA Isaac Lab可用環(huán)境與<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>腳本使用指南

    智能盒子到底是什么東西?昇騰310深度測(cè)評(píng):為何能成為行業(yè)新寵?

    讓人摸不著頭腦的“智能盒子”。各位搞技術(shù)、搞工程的朋友,咱們?cè)?b class='flag-5'>工作中是不是經(jīng)常聽(tīng)到“智能盒子”這個(gè)說(shuō)法?每次聽(tīng)到這個(gè)詞,我猜很多人心里都在犯嘀咕:這東西到底是個(gè)啥玩意兒?難道就是個(gè)裝了點(diǎn)智能軟件的普通盒子?
    的頭像 發(fā)表于 04-27 10:46 ?596次閱讀
    智能盒子<b class='flag-5'>到底是</b>什么東西?昇騰310<b class='flag-5'>深度</b>測(cè)評(píng):為何能成為行業(yè)新寵?

    一文給你講透!DA板卡到底是什么?和主板又有哪些不同?

    大家好,我是老王,在電子行業(yè)干了十幾年,今天我就用“大白話”給大家講講DA板卡到底是啥,和咱們常說(shuō)的“主板”有啥區(qū)別。文章里會(huì)穿插一些表格和實(shí)際案例,保證你讀完不僅能懂,還能跟朋友吹牛!
    的頭像 發(fā)表于 04-24 16:48 ?768次閱讀
    一文給你講透!DA板卡<b class='flag-5'>到底是</b>什么?<b class='flag-5'>它</b>和主板又有哪些不同?

    18個(gè)常用的強(qiáng)化學(xué)習(xí)算法整理:從基礎(chǔ)方法到高級(jí)模型的理論技術(shù)與代碼實(shí)現(xiàn)

    本來(lái)轉(zhuǎn)自:DeepHubIMBA本文系統(tǒng)講解從基本強(qiáng)化學(xué)習(xí)方法到高級(jí)技術(shù)(如PPO、A3C、PlaNet等)的實(shí)現(xiàn)原理與編碼過(guò)程,旨在通過(guò)理論結(jié)合代碼的方式,構(gòu)建對(duì)強(qiáng)化學(xué)習(xí)算法的全面理解。為確保內(nèi)容
    的頭像 發(fā)表于 04-23 13:22 ?421次閱讀
    18個(gè)常用的<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>算法整理:從基礎(chǔ)方法到高級(jí)模型的理論技術(shù)與代碼實(shí)現(xiàn)

    如何排除深度學(xué)習(xí)工作臺(tái)上量化OpenVINO?的特定層?

    無(wú)法確定如何排除要在深度學(xué)習(xí)工作臺(tái)上量化OpenVINO?特定層
    發(fā)表于 03-06 07:31

    詳解RAD端到端強(qiáng)化學(xué)習(xí)后訓(xùn)練范式

    受限于算力和數(shù)據(jù),大語(yǔ)言模型預(yù)訓(xùn)練的 scalinglaw 已經(jīng)趨近于極限。DeepSeekR1/OpenAl01通過(guò)強(qiáng)化學(xué)習(xí)后訓(xùn)練涌現(xiàn)了強(qiáng)大的推理能力,掀起新一輪技術(shù)革新。
    的頭像 發(fā)表于 02-25 14:06 ?603次閱讀
    詳解RAD端到端<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>后訓(xùn)練范式

    淺談適用規(guī)模充電站的深度學(xué)習(xí)有序充電策略

    深度強(qiáng)化學(xué)習(xí)能夠有效計(jì)及電動(dòng)汽車(chē)出行模式和充電需求的不確定性,實(shí)現(xiàn)充電場(chǎng)站充電成本化的目標(biāo)。通過(guò)對(duì)電動(dòng)汽車(chē)泊車(chē)時(shí)間和充電需求特征進(jìn)行提取,建立適用于大規(guī)模電動(dòng)汽車(chē)有序充電的馬爾可夫決策過(guò)程模型,并
    的頭像 發(fā)表于 02-08 15:00 ?542次閱讀
    淺談適用規(guī)模充電站的<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>有序充電策略

    AIGC是什么及其應(yīng)用 AIGC的定義和工作原理

    的發(fā)展得益于深度學(xué)習(xí)的進(jìn)步,特別是神經(jīng)網(wǎng)絡(luò)模型,如生成對(duì)抗網(wǎng)絡(luò)(GANs)、變分自編碼器(VAEs)和自回歸模型等。 AIGC的工作原理 AIGC的工作原理可以分為以下幾個(gè)步驟: 數(shù)據(jù)
    的頭像 發(fā)表于 11-22 16:00 ?4335次閱讀

    螞蟻集團(tuán)收購(gòu)邊塞科技,吳翼出任強(qiáng)化學(xué)習(xí)實(shí)驗(yàn)室首席科學(xué)家

    近日,專(zhuān)注于模型賽道的初創(chuàng)企業(yè)邊塞科技宣布被螞蟻集團(tuán)收購(gòu)。據(jù)悉,此次交易完成后,邊塞科技將保持獨(dú)立運(yùn)營(yíng),而原投資人已全部退出。 與此同時(shí),螞蟻集團(tuán)近期宣布成立強(qiáng)化學(xué)習(xí)實(shí)驗(yàn)室,旨在推動(dòng)大模型強(qiáng)化學(xué)習(xí)
    的頭像 發(fā)表于 11-22 11:14 ?1586次閱讀

    如何使用 PyTorch 進(jìn)行強(qiáng)化學(xué)習(xí)

    強(qiáng)化學(xué)習(xí)(Reinforcement Learning, RL)是一種機(jī)器學(xué)習(xí)方法,通過(guò)與環(huán)境的交互來(lái)學(xué)習(xí)如何做出決策,以最大化累積獎(jiǎng)勵(lì)。PyTorch 是一個(gè)流行的開(kāi)源機(jī)器
    的頭像 發(fā)表于 11-05 17:34 ?1046次閱讀

    谷歌AlphaChip強(qiáng)化學(xué)習(xí)工具發(fā)布,聯(lián)發(fā)科天璣芯片率先采用

    近日,谷歌在芯片設(shè)計(jì)領(lǐng)域取得了重要突破,詳細(xì)介紹了其用于芯片設(shè)計(jì)布局的強(qiáng)化學(xué)習(xí)方法,并將該模型命名為“AlphaChip”。據(jù)悉,AlphaChip有望顯著加速芯片布局規(guī)劃的設(shè)計(jì)流程,并幫助芯片在性能、功耗和面積方面實(shí)現(xiàn)更優(yōu)表現(xiàn)。
    的頭像 發(fā)表于 09-30 16:16 ?705次閱讀

    功放和運(yùn)放到底是什么區(qū)別?

    想請(qǐng)問(wèn)一下功放和運(yùn)放到底是什么區(qū)別,感覺(jué)只要接一個(gè)小負(fù)載,運(yùn)放的輸出電流也可以很大?。?b class='flag-5'>到底有什么區(qū)別啊
    發(fā)表于 09-10 07:00

    運(yùn)放的輸入電容到底是什么?

    我想請(qǐng)問(wèn)一下運(yùn)放的輸入電容到底是什么?
    發(fā)表于 09-04 06:52

    LMH6502的輸入電壓到底是多少?

    LMH6502的輸入電壓到底是多少,我稍微給如大一點(diǎn)點(diǎn)的信號(hào),放大不行還能接受,我衰減都失真,
    發(fā)表于 08-27 07:02

    什么是無(wú)刷電機(jī)?工作原理是什么??

    無(wú)刷直流電機(jī)由電動(dòng)機(jī)主體和驅(qū)動(dòng)器組成,是一種典型的機(jī)電一體化產(chǎn)品。 無(wú)刷電機(jī)是指無(wú)電刷和換向器(或集電環(huán))的電機(jī),又稱(chēng)無(wú)換向器電機(jī)。工業(yè)級(jí)直流無(wú)刷電機(jī),猶如一個(gè)沉默的藝術(shù)家,通過(guò)電磁之舞,將電能轉(zhuǎn)化為機(jī)械動(dòng)力。工作原理,是電流與磁場(chǎng)的優(yōu)美交響,是力量與控制的和諧共舞。
    的頭像 發(fā)表于 08-21 11:37 ?3283次閱讀
    什么是無(wú)刷電機(jī)?<b class='flag-5'>它</b>的<b class='flag-5'>工作原理</b>是什么??