chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

美顏軟件:人臉識別檢測,逐漸升級到深度神經(jīng)網(wǎng)絡(luò)

姚小熊27 ? 來源:曠視科技 ? 作者:曠視科技 ? 2020-06-18 11:08 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

現(xiàn)如今,美顏相機(jī)被眾多愛美朋友所使用,不管是和好朋友出去逛街還是旅游,都會(huì)使用美顏相機(jī)拍照定格美麗的一瞬間,美顏相機(jī)里的人臉美顏功能讓照片看起來更加的精致、美麗,那么,人臉美顏到底是如何讓人像變得更美的呢?

美顏一張照片需要對其進(jìn)行人臉的檢測,也就是檢測圖片之中是否存在人臉,當(dāng)檢測出人臉之后人臉美顏功能就能對其進(jìn)行一個(gè)準(zhǔn)確的定位,以便于更好地使用瘦臉、磨皮、美白等步驟。實(shí)際上,在深度學(xué)習(xí)理論還未誕生之前,主要還是依靠人工設(shè)計(jì)好的特征來檢測人臉,深度學(xué)習(xí)理論將人臉檢測功能提升到了一個(gè)新的等級,逐漸開始使用深度神經(jīng)網(wǎng)絡(luò)來實(shí)現(xiàn)人臉的檢測。

人臉美顏主要依靠人臉識別技術(shù),現(xiàn)在,人臉美顏功能正廣泛應(yīng)用于各大娛樂平臺(tái)之中,尤其是短視頻軟件里,由于用戶們對于美顏的需求越來越高,也更加喜歡一些有創(chuàng)意、有趣味的功能,因此人臉美顏功能在專注于將人臉美化這一基礎(chǔ)上增添了很多新功能,比如加上了好看的濾鏡、動(dòng)畫效果等有趣味、有意思的玩法。人臉美顏也不再一種純粹的美化功能,更多的是帶來了人們生活之中的小樂趣,也讓人們的生活變得更加“美麗”。

總之,帶有人臉美顏功能的軟件幾乎人手必備,不管是一鍵美顏功能還是趣味多多的美顏效果,都成為了不少“弄潮兒”的愛用軟件。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 人臉識別
    +關(guān)注

    關(guān)注

    77

    文章

    4089

    瀏覽量

    84292
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122794
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    無刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    MATLAB/SIMULINK工具對該方法進(jìn)行驗(yàn)證,實(shí)驗(yàn)結(jié)果表明該方法在全程速度下效果良好。 純分享帖,點(diǎn)擊下方附件免費(fèi)獲取完整資料~~~ *附件:無刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究.pdf
    發(fā)表于 06-25 13:06

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?668次閱讀

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Ba
    的頭像 發(fā)表于 02-12 15:15 ?862次閱讀

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠?qū)W習(xí)復(fù)雜的特征表達(dá),適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡(luò)在圖像
    的頭像 發(fā)表于 02-12 15:12 ?680次閱讀

    深度學(xué)習(xí)入門:簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個(gè)簡單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個(gè)神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?530次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1190次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?1872次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在圖像處理
    的頭像 發(fā)表于 11-15 14:52 ?846次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)在語音識別中的應(yīng)用實(shí)例

    語音識別技術(shù)是人工智能領(lǐng)域的一個(gè)重要分支,它使計(jì)算機(jī)能夠理解和處理人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,特別是長短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)的引入,語音識別的準(zhǔn)確性和效率得到了顯著提升。
    的頭像 發(fā)表于 11-13 10:03 ?1852次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別

    深度學(xué)習(xí)領(lǐng)域,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關(guān)注。然而,傳統(tǒng)RNN在處理長序列時(shí)存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)應(yīng)運(yùn)而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?1214次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    許多種類型,但本文將只關(guān)注卷積神經(jīng)網(wǎng)絡(luò)(CNN),其主要應(yīng)用領(lǐng)域是對輸入數(shù)據(jù)的模式識別和對象分類。CNN是一種用于深度學(xué)習(xí)的 人工神經(jīng)網(wǎng)絡(luò) 。這種網(wǎng)
    發(fā)表于 10-24 13:56

    【飛凌嵌入式OK3576-C開發(fā)板體驗(yàn)】RKNN神經(jīng)網(wǎng)絡(luò)-車牌識別

    LPRNet基于深層神經(jīng)網(wǎng)絡(luò)設(shè)計(jì),通過輕量級的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)車牌識別。它采用端端的訓(xùn)練方式,不依賴字符分割,能夠直接處理整張車牌圖像,并輸出最終的字符序列。這種設(shè)計(jì)提高了
    發(fā)表于 10-10 16:40

    深度識別算法包括哪些內(nèi)容

    深度識別算法是深度學(xué)習(xí)領(lǐng)域的一個(gè)重要組成部分,它利用深度神經(jīng)網(wǎng)絡(luò)模型對輸入數(shù)據(jù)進(jìn)行高層次的理解和識別
    的頭像 發(fā)表于 09-10 15:28 ?843次閱讀

    深度識別人臉識別在任務(wù)中為什么有很強(qiáng)大的建模能力

    通過大量數(shù)據(jù)進(jìn)行訓(xùn)練,能夠自動(dòng)學(xué)習(xí)人臉的特征表示,而不需要人為設(shè)計(jì)特征提取算法。 多層神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu) :深度學(xué)習(xí)模型通常包含多層神經(jīng)網(wǎng)絡(luò),這
    的頭像 發(fā)表于 09-10 14:53 ?838次閱讀

    FPGA在深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Network, DNN)作為其核心算法之一,在圖像識別、語音識別、自然語言處理等領(lǐng)域取得了顯著成果。然而,傳統(tǒng)的
    的頭像 發(fā)表于 07-24 10:42 ?1206次閱讀