chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

知識(shí)圖譜與圖神經(jīng)網(wǎng)絡(luò)模型相融合的方法及應(yīng)用

深度學(xué)習(xí)自然語言處理 ? 來源:北郵 GAMMA Lab ? 作者:楊天持 ? 2020-08-27 18:01 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近幾年來,人工智能技術(shù)得到了飛速發(fā)展,其進(jìn)展突出體現(xiàn)在以知識(shí)圖譜(Knowledge Graph)為代表的知識(shí)工程和以圖神經(jīng)網(wǎng)絡(luò)(Graph Neural NetWorks, GNN)為代表的深度學(xué)習(xí)等相關(guān)領(lǐng)域。融合知識(shí)圖譜與圖神經(jīng)網(wǎng)絡(luò)已然成為研究人員進(jìn)一步完善知識(shí)圖譜學(xué)習(xí)與提升圖神經(jīng)網(wǎng)絡(luò)模型推理能力的重要技術(shù)思路。

知識(shí)圖譜是以圖的形式表現(xiàn)客觀世界中的實(shí)體及其之間關(guān)系的知識(shí)庫,實(shí)體可以是真實(shí)世界中的物體或抽象的概念,關(guān)系則表示了實(shí)體間的聯(lián)系。因此,知識(shí)圖譜能夠以結(jié)構(gòu)化的形式表示人類知識(shí),通過知識(shí)表示和推理技術(shù),可以給人工智能系統(tǒng)提供可處理的先驗(yàn)知識(shí),讓其具有與人類一樣的解決復(fù)雜任務(wù)的能力[1~3]。如何更好地構(gòu)建、表示、補(bǔ)全、應(yīng)用知識(shí)圖譜,已經(jīng)成為認(rèn)知和人工智能領(lǐng)域重要的研究方向之一。

圖 神 經(jīng) 網(wǎng) 絡(luò) 的 概 念 最 早 于 2005 年 由 戈 里(Gori)等人[4] 提出,是一種專門用于處理圖結(jié)構(gòu)數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò)模型。使用圖可以更準(zhǔn)確和靈活地對(duì)現(xiàn)實(shí)應(yīng)用中的數(shù)據(jù)建模,如在電子商務(wù)領(lǐng)域中的用戶 – 產(chǎn)品交互圖、化學(xué)領(lǐng)域的分子圖、醫(yī)藥領(lǐng)域的藥物副作用圖等。因此,研究者們?cè)O(shè)計(jì)了多種圖神經(jīng)網(wǎng)絡(luò)模型,包括圖卷積網(wǎng)絡(luò)(Graph Convolu-tional Network,GCN)[5~7]、圖注意力網(wǎng)絡(luò)(Graph Attention Network,GAT)[8] 等。此外,由于異質(zhì)圖具有更靈活的建模和融合信息的能力[9],研究者們還嘗試設(shè)計(jì)和應(yīng)用基于異質(zhì)圖的圖神經(jīng)網(wǎng)絡(luò)模型[10~12]。如何設(shè)計(jì)更合理的圖神經(jīng)網(wǎng)絡(luò)模型,使信息沿著圖結(jié)構(gòu)更合理地傳播,從而提升模型對(duì)圖結(jié)構(gòu)數(shù)據(jù)的擬合能力,是人工智能領(lǐng)域的一個(gè)熱點(diǎn)問題。

近年來,描述常識(shí)和事實(shí)的知識(shí)圖譜成為了學(xué)術(shù)界和工業(yè)界廣泛使用的知識(shí)表示方式,圖神經(jīng)網(wǎng)絡(luò)在信息傳播、關(guān)系歸納偏置上也展現(xiàn)了優(yōu)秀的性能[13]。考慮到知識(shí)圖譜本身恰好就是一種圖結(jié)構(gòu)數(shù)據(jù),因此采用圖構(gòu)建知識(shí)和數(shù)據(jù)之間的關(guān)聯(lián),同時(shí)應(yīng)用圖神經(jīng)網(wǎng)絡(luò)技術(shù),有望結(jié)合知識(shí)和數(shù)據(jù)實(shí)現(xiàn)更好的可解釋和可信人工智能技術(shù)。一方面,利用圖神經(jīng)網(wǎng)絡(luò)在學(xué)習(xí)節(jié)點(diǎn)、邊表示上的優(yōu)勢(shì),可以更好地學(xué)習(xí)知識(shí)圖譜的實(shí)體、關(guān)系的嵌入表示,改善關(guān)系抽取等任務(wù),幫助構(gòu)建知識(shí)圖譜,以及提高鏈接預(yù)測(cè)等任務(wù),幫助補(bǔ)全知識(shí)圖譜 ;另一方面,利用圖神經(jīng)網(wǎng)絡(luò)在信息傳播和推理上的優(yōu)勢(shì),可以更有效地在應(yīng)用任務(wù)中引入知識(shí)圖譜中的信息,從而改善如文本挖掘、推薦系統(tǒng)、計(jì)算機(jī)視覺等領(lǐng)域中的應(yīng)用效果,提供可解釋的模型。

本文將對(duì)知識(shí)圖譜與圖神經(jīng)網(wǎng)絡(luò)模型相融合的方法及應(yīng)用進(jìn)行綜述。主要包括以下內(nèi)容:

1 基于圖神經(jīng)網(wǎng)絡(luò)的知識(shí)圖譜學(xué)習(xí)與計(jì)算

由于知識(shí)圖譜可以表征實(shí)體之間結(jié)構(gòu)化的關(guān)系,如今已經(jīng)成為認(rèn)知和人工智能領(lǐng)域重要的研究方向。圖神經(jīng)網(wǎng)絡(luò)利用深度神經(jīng)網(wǎng)絡(luò)對(duì)圖數(shù)據(jù)中的拓?fù)浣Y(jié)構(gòu)信息和屬性特征信息進(jìn)行整合,進(jìn)而提供更精細(xì)的節(jié)點(diǎn)或子結(jié)構(gòu)的特征表示,并能很方便地以解耦或端到端的方式與下游任務(wù)結(jié)合,巧妙地滿足了知識(shí)圖譜對(duì)學(xué)習(xí)實(shí)體、關(guān)系的屬性特征和結(jié)構(gòu)特征的要求。本節(jié)主要從知識(shí)圖譜中的5個(gè)典型任務(wù)介紹基于圖神經(jīng)網(wǎng)絡(luò)的知識(shí)圖譜學(xué)習(xí)方法。

知識(shí)圖譜表示學(xué)習(xí)

知識(shí)圖譜表示學(xué)習(xí),即為知識(shí)圖譜中的實(shí)體和關(guān)系學(xué)習(xí)出一個(gè)低維度的向量表示,同時(shí)包含一些語義信息,從而得以在下游任務(wù)中更加方便地提取和利用知識(shí)圖譜中的信息,例如鏈接預(yù)測(cè)[10]、常識(shí)問答[1]等。通過應(yīng)用圖神經(jīng)網(wǎng)絡(luò),在學(xué)習(xí)知識(shí)圖譜的表示時(shí),每個(gè)實(shí)體都將利用到與其相關(guān)的其他實(shí)體中的信息,打破了彼此之間的孤立性,從而學(xué)得更完整更豐富的實(shí)體、關(guān)系表示。略

圖1 知識(shí)圖譜的表示學(xué)習(xí)方法

信息抽取

信息抽取是指從非結(jié)構(gòu)化、半結(jié)構(gòu)化文檔或句子中提取結(jié)構(gòu)化信息的技術(shù),與知識(shí)圖譜的構(gòu)建有著密切的聯(lián)系,主要包括命名實(shí)體識(shí)別、實(shí)體消歧、關(guān)系抽取、指代消解等任務(wù)。近年來,已有許多研究將圖神經(jīng)網(wǎng)絡(luò)應(yīng)用于知識(shí)圖譜的關(guān)系抽取任務(wù),而在其他任務(wù)上對(duì)圖神經(jīng)網(wǎng)絡(luò)的探索還較少。通過圖神經(jīng)網(wǎng)絡(luò)可以對(duì)句子內(nèi)或句間詞與詞的關(guān)聯(lián)關(guān)系進(jìn)行有效建模,從而更準(zhǔn)確地捕捉實(shí)體間的關(guān)系。略

圖2 基于圖神經(jīng)網(wǎng)絡(luò)的關(guān)系抽取

實(shí)體對(duì)齊

實(shí)體對(duì)齊是將從知識(shí)圖譜中學(xué)習(xí)到的描述同一目標(biāo)的實(shí)體或概念進(jìn)行合并,再將合并后的實(shí)體集與開放鏈接數(shù)據(jù)中抽取的實(shí)體進(jìn)行合并,旨在融合多個(gè)知識(shí)圖譜形成一個(gè)更完整的知識(shí)圖譜。由于圖神經(jīng)網(wǎng)絡(luò)具有識(shí)別同構(gòu)子圖的能力[24],而可對(duì)齊的實(shí)體對(duì)周圍通常有相似的鄰居,即具有一定的同構(gòu)特征,因此目前有許多研究者嘗試將圖神經(jīng)網(wǎng)絡(luò)用于實(shí)體對(duì)齊。略

圖3 基于圖神經(jīng)網(wǎng)絡(luò)的實(shí)體消歧方法GNED

鏈接預(yù)測(cè)

鏈接預(yù)測(cè)是用于預(yù)測(cè)知識(shí)圖譜中實(shí)體對(duì)之間所缺少關(guān)系的任務(wù),具有廣泛的應(yīng)用范圍,旨在解決知識(shí)圖譜不完整的問題。鏈接預(yù)測(cè)與知識(shí)圖譜表示學(xué)習(xí)有著不可分割的聯(lián)系,一方面表示學(xué)習(xí)通常需要用鏈接預(yù)測(cè)評(píng)價(jià)優(yōu)劣[10, 15],另一方面鏈接預(yù)測(cè)的模型通常也會(huì)學(xué)得實(shí)體和關(guān)系的表示。許多工作利用圖神經(jīng)網(wǎng)絡(luò)為實(shí)體引入鄰實(shí)體和對(duì)應(yīng)關(guān)系的信息,學(xué)得更全面的實(shí)體表示,從而更準(zhǔn)確地預(yù)測(cè)實(shí)體之間的鏈接關(guān)系。略

知識(shí)推理

與鏈接預(yù)測(cè)相似,知識(shí)推理是從給定的知識(shí)圖譜中推導(dǎo)出實(shí)體與實(shí)體之間的新關(guān)系,但知識(shí)推理所獲得的關(guān)系通常需要在知識(shí)圖譜中進(jìn)行多跳的推理過程。知識(shí)推理是一些下游任務(wù)的重要支撐之一,如知識(shí)庫問答[1~3]。由于圖神經(jīng)網(wǎng)絡(luò)在推理能力上的優(yōu)勢(shì)[13],近年來被一些研究者嘗試用于知識(shí)推理任務(wù)。略

圖4 基于圖神經(jīng)網(wǎng)絡(luò)的知識(shí)推理

2基于圖神經(jīng)網(wǎng)絡(luò)的知識(shí)圖譜應(yīng)用

描述常識(shí)和事實(shí)的知識(shí)圖譜是學(xué)術(shù)界和工業(yè)界廣泛使用的知識(shí)表示方式,采用圖構(gòu)建知識(shí)和數(shù)據(jù)之間的關(guān)聯(lián),是一種直接且有效的將知識(shí)和數(shù)據(jù)結(jié)合的方式。受益于圖神經(jīng)網(wǎng)絡(luò)技術(shù)在信息傳播和推理上的優(yōu)勢(shì),知識(shí)圖譜中的先驗(yàn)知識(shí)被有效地引入到應(yīng)用任務(wù)中。

文本挖掘

知識(shí)圖譜由自然語言構(gòu)建而來,因此與文本挖掘的聯(lián)系頗深。知識(shí)圖譜在大部分的文本挖掘任務(wù)中都有大量的應(yīng)用,其中應(yīng)用最廣泛的是知識(shí)庫問答任務(wù)。在文本分類、文本生成等任務(wù)中,知識(shí)圖譜也都扮演了非常重要的角色。略

圖5 融合知識(shí)圖譜的短文本分類方法HGAT

推薦系統(tǒng)

為了解決推薦系統(tǒng)中的稀疏性問題和冷啟動(dòng)問題,一種可行的思路是將知識(shí)圖譜作為外部信息整合到推薦系統(tǒng)中,使推薦系統(tǒng)具有常識(shí)推理能力。研究者們基于圖神經(jīng)網(wǎng)絡(luò)強(qiáng)大的聚合信息以及推理能力,設(shè)計(jì)了基于圖神經(jīng)網(wǎng)絡(luò)和知識(shí)圖譜的推薦系統(tǒng),有效地提升了推薦命中率。此外,圖神經(jīng)網(wǎng)絡(luò)的信息傳播與推理能力也為推薦結(jié)構(gòu)提供了一定的可解釋性。略

圖6 融合知識(shí)圖譜的推薦系統(tǒng)

計(jì)算機(jī)視覺

人類區(qū)別于現(xiàn)代計(jì)算機(jī)視覺算法的一個(gè)特征是獲得知識(shí)并使用該知識(shí)推理視覺世界的能力,從而可以通過很少的例子認(rèn)知視覺世界[49]。研究者們考慮到圖神經(jīng)網(wǎng)絡(luò)在學(xué)習(xí)節(jié)點(diǎn)和邊的表示方面的優(yōu)勢(shì),應(yīng)用了圖神經(jīng)網(wǎng)絡(luò)來學(xué)習(xí)利用圖像中的目標(biāo)與知識(shí)圖譜之間的關(guān)聯(lián)關(guān)系。略

圖7 融合知識(shí)圖譜的圖像分類

3 總結(jié)與展望

結(jié)合知識(shí)圖譜和圖神經(jīng)網(wǎng)絡(luò)的相關(guān)研究已經(jīng)成為人工智能領(lǐng)域的一個(gè)熱點(diǎn)方向。知識(shí)圖譜可以為各類學(xué)習(xí)任務(wù)提供良好的先驗(yàn)知識(shí),圖神經(jīng)網(wǎng)絡(luò)則可以更好地支持圖數(shù)據(jù)的學(xué)習(xí)任務(wù)。但是,目前基于圖神經(jīng)網(wǎng)絡(luò)的知識(shí)圖譜學(xué)習(xí)、計(jì)算與應(yīng)用的研究都還相對(duì)較少,未來仍有巨大的發(fā)展空間,例如基于圖神經(jīng)網(wǎng)絡(luò)的知識(shí)圖譜自動(dòng)構(gòu)建、基于異質(zhì)圖神經(jīng)網(wǎng)絡(luò)的知識(shí)融合、基于元路徑或圖神經(jīng)網(wǎng)絡(luò)的知識(shí)圖譜復(fù)雜推理、基于圖神經(jīng)網(wǎng)絡(luò)的可解釋性學(xué)習(xí)等。

自動(dòng)構(gòu)建當(dāng)前的知識(shí)圖譜高度依賴于人工構(gòu)建,構(gòu)建特定領(lǐng)域的知識(shí)圖譜又是企業(yè)應(yīng)用里不可或缺的現(xiàn)實(shí)需求。在學(xué)習(xí)建模實(shí)體的時(shí)間信息和實(shí)體動(dòng)力學(xué)方面,已有一些基于傳統(tǒng)深度學(xué)習(xí)的工作,但通常無法將知識(shí)圖譜作為一個(gè)整體對(duì)其動(dòng)態(tài)性進(jìn)行建模。因而,利用最近的一些動(dòng)態(tài)圖神經(jīng)網(wǎng)絡(luò)的方法例如圖時(shí)空網(wǎng)絡(luò),同時(shí)建模并預(yù)測(cè)微觀層面上的實(shí)體以及宏觀層面上的圖譜的變化規(guī)律,是一個(gè)值得關(guān)注的方向。

融合知識(shí)采用圖構(gòu)建知識(shí)和數(shù)據(jù)之間的關(guān)聯(lián)從而引入知識(shí)圖譜,是目前研究的一種主流思路之一。通常,真實(shí)數(shù)據(jù)中的交互關(guān)系有豐富的屬性特征(如用戶–商品交互圖中用戶和商品都帶有豐富的屬性特征),而知識(shí)圖譜則是關(guān)系特征豐富的,即相對(duì)更側(cè)重于結(jié)構(gòu)性。此外,知識(shí)圖譜中的本體概念層包含大量的謂詞邏輯規(guī)則知識(shí),如何設(shè)計(jì)更合適的圖神經(jīng)網(wǎng)絡(luò)模型彌補(bǔ)這三者之間的語義鴻溝,從而更好地融合知識(shí)圖譜中的先驗(yàn)知識(shí),將是一個(gè)研究難點(diǎn)。一種直接的思路是利用異質(zhì)圖神經(jīng)網(wǎng)絡(luò)的方法,考慮節(jié)點(diǎn)的異質(zhì)性和多模態(tài)性,從而用適合各類型的不同方式對(duì)不同的信息進(jìn)行融合。

復(fù)雜推理由于基于嵌入的方法在復(fù)雜的邏輯推理上有局限性,因而可以進(jìn)一步探討關(guān)系路徑和符號(hào)邏輯兩個(gè)方向。異質(zhì)圖上的元路徑定義了高階的語義關(guān)系,而知識(shí)圖譜可看作一種特殊的異質(zhì)圖,將基于異質(zhì)圖神經(jīng)網(wǎng)絡(luò)的消息傳遞與基于強(qiáng)化學(xué)習(xí)的路徑查找和約減相結(jié)合,是一種可行的處理復(fù)雜推理的思路。研究者們最近的工作將概率圖模型(如馬爾科夫網(wǎng))與圖神經(jīng)網(wǎng)絡(luò)相結(jié)合,旨在消息傳遞時(shí)發(fā)現(xiàn)并推理邏輯規(guī)則,而利用此類模型挖掘知識(shí)圖譜上的推理規(guī)則,也是一個(gè)值得注意的研究方向。

可解釋性深度學(xué)習(xí)的黑盒問題被人詬病已久,圖神經(jīng)網(wǎng)絡(luò)的信息傳播機(jī)制相較傳統(tǒng)深度學(xué)習(xí)模型更具有可解釋性。知識(shí)圖譜提供了現(xiàn)實(shí)世界的事實(shí)知識(shí),利用圖神經(jīng)網(wǎng)絡(luò)模型尤其是概率圖神經(jīng)網(wǎng)絡(luò)應(yīng)用在知識(shí)圖譜中實(shí)現(xiàn)邏輯推理,從而顯式地生成基于知識(shí)圖譜的推理路徑,或許可以期待打開深度學(xué)習(xí)的黑盒。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4829

    瀏覽量

    106831
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49772

    瀏覽量

    261724
  • 知識(shí)圖譜
    +關(guān)注

    關(guān)注

    2

    文章

    132

    瀏覽量

    8254

原文標(biāo)題:【長(zhǎng)文綜述】基于圖神經(jīng)網(wǎng)絡(luò)的知識(shí)圖譜研究進(jìn)展

文章出處:【微信號(hào):zenRRan,微信公眾號(hào):深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    NMSIS NN 軟件庫是一組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫分為多個(gè)功能,每個(gè)功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    構(gòu)建CNN網(wǎng)絡(luò)模型并優(yōu)化的一般化建議

    通過實(shí)踐,本文總結(jié)了構(gòu)建CNN網(wǎng)絡(luò)模型并優(yōu)化的一般化建議,這些建議將會(huì)在構(gòu)建高準(zhǔn)確率輕量級(jí)CNN神經(jīng)網(wǎng)絡(luò)模型方面提供幫助。 1)避免單層神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 10-28 08:02

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    本帖欲分享在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)。我們采用jupyter notebook作為開發(fā)IDE,以TensorFlow2為訓(xùn)練框架,目標(biāo)是訓(xùn)練一個(gè)手寫數(shù)字識(shí)別的神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 10-22 07:03

    基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真模型解決方案

    在基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真(DPD)模型中,使用不同的激活函數(shù)對(duì)整個(gè)系統(tǒng)性能和能效有何影響?
    的頭像 發(fā)表于 08-29 14:01 ?3105次閱讀

    無刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測(cè)方法的研究

    摘要:論文通過對(duì)無刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相電壓之間存在映射關(guān)系,因此構(gòu)建了一個(gè)以三相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實(shí)現(xiàn)轉(zhuǎn)角預(yù)測(cè),并采用改進(jìn)遺傳算法來訓(xùn)練
    發(fā)表于 06-25 13:06

    神經(jīng)網(wǎng)絡(luò)RAS在異步電機(jī)轉(zhuǎn)速估計(jì)中的仿真研究

    眾多方法中,由于其結(jié)構(gòu)簡(jiǎn)單,穩(wěn)定性好廣泛受到人們的重視,且已被用于產(chǎn)品開發(fā)。但是MRAS仍存在在低速區(qū)速度估計(jì)精度下降和對(duì)電動(dòng)機(jī)參數(shù)變化非常敏感的問題。本文利用神經(jīng)網(wǎng)絡(luò)的特點(diǎn),使估計(jì)更為簡(jiǎn)單、快速
    發(fā)表于 06-16 21:54

    基于FPGA搭建神經(jīng)網(wǎng)絡(luò)的步驟解析

    本文的目的是在一個(gè)神經(jīng)網(wǎng)絡(luò)已經(jīng)通過python或者M(jìn)ATLAB訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)模型,將訓(xùn)練好的模型的權(quán)重和偏置文件以TXT文件格式導(dǎo)出,然后通過python程序?qū)xt文件轉(zhuǎn)化為coe
    的頭像 發(fā)表于 06-03 15:51 ?913次閱讀
    基于FPGA搭建<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的步驟解析

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?1346次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率

    優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率是提高模型訓(xùn)練效率和性能的關(guān)鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)率的方法: 一、理解學(xué)習(xí)率的重要性 學(xué)習(xí)率決定了模型
    的頭像 發(fā)表于 02-12 15:51 ?1457次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機(jī)器學(xué)習(xí)模型,具有顯著的優(yōu)點(diǎn),同時(shí)也存在一些不容忽視的缺點(diǎn)。以下是對(duì)BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點(diǎn)的分析: 優(yōu)點(diǎn)
    的頭像 發(fā)表于 02-12 15:36 ?1616次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算
    的頭像 發(fā)表于 02-12 15:18 ?1301次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1364次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個(gè)階段:前向傳播和反向傳播。以下是訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:10 ?1477次閱讀

    深度學(xué)習(xí)入門:簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)由多個(gè)神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?857次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工
    的頭像 發(fā)表于 01-09 10:24 ?2274次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)<b class='flag-5'>方法</b>